Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\sqrt{72}:\sqrt{8}=\sqrt{72:8}=3\)
b) \(\left(\sqrt{28}-\sqrt{7}+\sqrt{112}\right):\sqrt{7}=5\sqrt{7}:\sqrt{7}=5\)
Bài 2:
a) \(\sqrt{\dfrac{49}{8}}:\sqrt{3\dfrac{1}{8}}=\sqrt{\dfrac{49}{8}:\dfrac{25}{8}}=\sqrt{\dfrac{49}{25}}=\dfrac{7}{5}\)
b) \(\sqrt{54x}:\sqrt{6x}=\sqrt{54x:6x}=\sqrt{9}=3\)
c) \(\sqrt{\dfrac{1}{125}}\cdot\sqrt{\dfrac{32}{35}}:\sqrt{\dfrac{56}{225}}\)
\(=\dfrac{\sqrt{5}}{25}\cdot\dfrac{4\sqrt{2}}{\sqrt{35}}:\dfrac{2\sqrt{14}}{15}\)
\(=\dfrac{\sqrt{5}\cdot4\sqrt{2}\cdot15}{25\cdot\sqrt{35}\cdot\sqrt{14}\cdot2}\)
\(=\dfrac{6}{35}\)
Bài 1:
a. Ta có \(\sqrt{\dfrac{2}{x^2}}=\dfrac{\sqrt{2}}{\left|x\right|}=\dfrac{\sqrt{2}}{x}\) ,để biểu thức có nghĩa thì \(x>0\)
b. Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) có nghĩa thì \(\dfrac{-3}{3x+5}\ge0\)
mà \(-3< 0\Rightarrow3x+5< 0\) \(\Rightarrow x< \dfrac{-5}{3}\)
Bài 2:
a. \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}=\dfrac{-\sqrt{2}}{-1}=\sqrt{2}\)
b. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}\)
\(=21\)
c. \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
\(=14-6\sqrt{28}+18+6\sqrt{28}\)
\(=32\)
\(=\left[\dfrac{\sqrt{7}-1}{\sqrt{3}\left(\sqrt{7}-1\right)}+\dfrac{\sqrt{3}-1}{\sqrt{7}\left(\sqrt{3}-1\right)}\right]\cdot\dfrac{\sqrt{21}}{\sqrt{7}+\sqrt{3}}\\ =\left(\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{7}}\right)\cdot\dfrac{\sqrt{21}}{\sqrt{7}+\sqrt{3}}\\ =\dfrac{\sqrt{3}+\sqrt{7}}{\sqrt{21}}\cdot\dfrac{\sqrt{21}}{\sqrt{3}+\sqrt{7}}=1\)
5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{2^2\cdot7}-\sqrt{3^2\cdot7}+\dfrac{\sqrt{7}\cdot\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1\)
\(=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\left[\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{2\cdot4}{\sqrt{x}-3}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\) khi
\(\dfrac{8}{\sqrt{x}-3}< -\sqrt{7}\)
\(\Leftrightarrow8< -\sqrt{7x}+3\sqrt{7}\)
\(\Leftrightarrow x< \dfrac{\left(3\sqrt{7}-8\right)^2}{7}\)
\(\left(5-\dfrac{7-\sqrt{7}}{1-\sqrt{7}}\right)\left(\dfrac{\sqrt{14}+\sqrt{7}}{1+\sqrt{2}}-5\right)\\ =\left(5-\dfrac{\sqrt{7}\left(\sqrt{7}-1\right)}{1-\sqrt{7}}\right)\left(\dfrac{\sqrt{7}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-5\right)\\ =\left(5+\dfrac{\sqrt{7}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}\right)\left(\sqrt{7}-5\right)\\ =\left(5+\sqrt{7}\right)\left(\sqrt{7}-5\right)\\ =\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)\\ =\left(\sqrt{7}\right)^2-5^2\\ =7-25\\ =-18\)
\(\left(5-\dfrac{7-\sqrt{7}}{1-\sqrt{7}}\right)\left(\dfrac{\sqrt{14}+\sqrt{7}}{1+\sqrt{2}}-5\right)\)
\(=\left(5+\dfrac{\sqrt{7}-7}{1-\sqrt{7}}\right)\left(\dfrac{\sqrt{14}+\sqrt{7}}{1+\sqrt{2}}-5\right)\)
\(=\left[5+\dfrac{\sqrt{7}\left(1-\sqrt{7}\right)}{1-\sqrt{7}}\right]\left[\dfrac{\sqrt{7}\left(1+\sqrt{2}\right)}{1+\sqrt{2}}-5\right]\)
\(=\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)\)
\(=\left(\sqrt{7}\right)^2-5^2\)
\(=7-25\)
\(=-18\)
\(\sqrt{112}-7\sqrt{\dfrac{1}{7}}-14\sqrt{\dfrac{1}{28}}-\dfrac{21}{\sqrt{7}}=\sqrt{16.7}-\sqrt{49.\dfrac{1}{7}}-2.\sqrt{\dfrac{1}{4}.49.\dfrac{1}{7}}-\dfrac{3.7}{\sqrt{7}}\)
\(=4\sqrt{7}-\sqrt{7}-2.\dfrac{1}{2}\sqrt{7}-3\sqrt{7}=4\sqrt{7}-\sqrt{7}-\sqrt{7}-3\sqrt{7}=-\sqrt{7}\)
\(=\sqrt{4^2.7}-\sqrt{\dfrac{7^2}{7}}-\sqrt{\dfrac{14^2}{\text{28}}}-\sqrt{3^2.7}\)
\(=4\sqrt{7}-\sqrt{7}-\sqrt{7}-3\sqrt{7}\)
\(=\sqrt{7}\left(4-1-1-3\right)\)
\(=-\sqrt{7}\)