Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{a^n-1}{a^n}\)=\(1-\frac{1}{a^n}\)
B=\(\frac{a^n}{a^n+1}\)=\(\frac{a^n+1-1}{a^n+1}\)=\(1-\frac{1}{a^n+1}\)
vì 1/an>1/an+1 suy ra 1-1/an<1-1/an+1 suy ra A<B
chúc bạn học tốt!!!!
Ta có : \(\frac{a^n-1}{a^n}\),\(\frac{a^n}{a^n+1}\)
Quy đồng , ta có :
\(A=\frac{\left(a^n-1\right).1}{a^n+1}\);\(B=\frac{a^n}{a^n+1}\)
=>\(A=\left(a^n-1\right).1;B=a^n\)
=> \(A=a^n-1;B=a^n\)
ta có:
th1 : nếu a hoặc n là âm thì :
\(a^n-1< a^n\)
th2: nếu cả a và n đều là dương hoặc âm thì :
\(a^n-1< a^n\)
VẬy...
a) quy đồng : \(\frac{n}{2n+1}=\frac{3n}{6n+3}\)
Vì 3n < 3n + 1 => \(\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)hay \(\frac{n}{2n+1}< \frac{3n+1}{6n+3}\)
b) Ta có :
\(\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)
\(\frac{n+2}{n+3}=\frac{n+3-1}{n+3}=1-\frac{1}{n+3}\)
Vì \(\frac{1}{n+1}>\frac{1}{n+3}\)nên \(1-\frac{1}{n+1}< 1-\frac{1}{n+3}\)hay \(\frac{n}{n+1}< \frac{n+2}{n+3}\)
c) giả sử \(\frac{n}{n+3}< \frac{n-1}{n+4}\)
\(\Leftrightarrow\frac{n\left(n+4\right)}{\left(n+3\right)\left(n+4\right)}< \frac{\left(n-1\right)\left(n+3\right)}{\left(n+3\right)\left(n+4\right)}\)
\(\Rightarrow n^2+4n< n^2+2n-3\)
\(\Rightarrow2n< -3\)( vô lí )
Vậy \(\frac{n}{n+3}>\frac{n-1}{n+4}\)
`3^(2 + n) và 2^(3 + n) `
`3^(2 + n) = 3^2 xx 3^n = 9 xx 3^n`
`2^(3 + n) = 2^3 xx 2^n = 8 xx 2^n`
ta thấy `9>8 ; 3^n > 2^n `
vậy `3^(2 + n) > 2^(3 + n) `
a). n/n+1 < n+2/n+3
b). n/n+3 > n−1/n+4
c). n/2n+1 < 3n+1/6n+3
k mk nha
\(\frac{n}{n+1}< 1\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}=\frac{n+2}{n+3}\)
=>n/n+1<n+2/n+3
vậy........
b)\(\frac{n}{n+3}>\frac{n}{n+4}>\frac{n-1}{n+4}\Rightarrow\frac{n}{n+3}>\frac{n}{n+4}\)
vậy.....
c)\(\frac{n}{2n+1}=\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)
vậy.......
Cách 1 :
Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)
\(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)
Cộng theo từng vế ( 1) và ( 2 ) ta được :
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)
VẬY \(A>B\)
CÁCH 2
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)
\(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)
VẬY A>B
Chúc bạn học tốt ( -_- )
a) \(\frac{{ - 21}}{{10}}\) < 0
b) \(\frac{{ - 5}}{{ - 2}} = \frac{5}{2} > 0\). Vậy \(\frac{{ - 5}}{{ - 2}} > 0\).
c) \(\frac{{ - 5}}{{ - 2}} = \frac{5}{2} > 0\), mà \(\frac{{ - 21}}{{10}} < 0\)
Vậy \(\frac{{ - 5}}{{ - 2}} > \frac{{ - 21}}{{10}}\).
a: \(-\dfrac{21}{10}< 0\)
b: \(0< -\dfrac{5}{-2}\)
c: \(-\dfrac{21}{10}< 0< \dfrac{-5}{-2}\)
Ta có : \(\left(-n-2\right).\left(-n-2\right)\)
\(=\left(-n-2\right).-n-\left(-n-2\right).2\)
\(=\left(-n\right).\left(-n\right)-2.\left(-n\right)-\left[-n.2-2.2\right]\)
\(=n^2+2n+2n+4\)
\(=n^2+4n+4\)( 1 )
\(\left(n+1\right)\left(n+3\right)\)
\(=\left(n+1\right).n+\left(n+1\right).3\)
\(=n^2+n+3n+3\)( 2 )
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\left(-n-2\right)\left(-n-2\right)>\left(n+1\right)\left(n+3\right)\)
\(\Rightarrow\frac{n+1}{-n-2}>\frac{-n-2}{n+3}\)
Chúc bạn học tốt !!!!