K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

Ta có :   \(\left(-n-2\right).\left(-n-2\right)\)

\(=\left(-n-2\right).-n-\left(-n-2\right).2\)

\(=\left(-n\right).\left(-n\right)-2.\left(-n\right)-\left[-n.2-2.2\right]\)

\(=n^2+2n+2n+4\)

\(=n^2+4n+4\)( 1 ) 

\(\left(n+1\right)\left(n+3\right)\)

\(=\left(n+1\right).n+\left(n+1\right).3\)

\(=n^2+n+3n+3\)( 2 ) 

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow\left(-n-2\right)\left(-n-2\right)>\left(n+1\right)\left(n+3\right)\)

\(\Rightarrow\frac{n+1}{-n-2}>\frac{-n-2}{n+3}\)

Chúc bạn học tốt !!!! 

17 tháng 6 2021

A=\(\frac{a^n-1}{a^n}\)=\(1-\frac{1}{a^n}\)

B=\(\frac{a^n}{a^n+1}\)=\(\frac{a^n+1-1}{a^n+1}\)=\(1-\frac{1}{a^n+1}\)

vì 1/an>1/an+1 suy ra 1-1/an<1-1/an+1 suy ra A<B

chúc bạn học tốt!!!!

17 tháng 6 2021

Ta có : \(\frac{a^n-1}{a^n}\),\(\frac{a^n}{a^n+1}\)

Quy đồng , ta có :

\(A=\frac{\left(a^n-1\right).1}{a^n+1}\);\(B=\frac{a^n}{a^n+1}\)

=>\(A=\left(a^n-1\right).1;B=a^n\)

=> \(A=a^n-1;B=a^n\)

ta có:

th1 : nếu a hoặc n là âm thì :

\(a^n-1< a^n\)

th2: nếu cả a và n đều là dương hoặc âm thì :

\(a^n-1< a^n\)

VẬy...

2 tháng 3 2017

a)     <

b)     <

c)     >

2 tháng 3 2017

a) quy đồng : \(\frac{n}{2n+1}=\frac{3n}{6n+3}\)

Vì 3n < 3n + 1 => \(\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)hay \(\frac{n}{2n+1}< \frac{3n+1}{6n+3}\)

b) Ta có :

\(\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)

 \(\frac{n+2}{n+3}=\frac{n+3-1}{n+3}=1-\frac{1}{n+3}\)

Vì \(\frac{1}{n+1}>\frac{1}{n+3}\)nên \(1-\frac{1}{n+1}< 1-\frac{1}{n+3}\)hay \(\frac{n}{n+1}< \frac{n+2}{n+3}\)

c)  giả sử \(\frac{n}{n+3}< \frac{n-1}{n+4}\)

\(\Leftrightarrow\frac{n\left(n+4\right)}{\left(n+3\right)\left(n+4\right)}< \frac{\left(n-1\right)\left(n+3\right)}{\left(n+3\right)\left(n+4\right)}\)

\(\Rightarrow n^2+4n< n^2+2n-3\)

\(\Rightarrow2n< -3\)( vô lí )

Vậy \(\frac{n}{n+3}>\frac{n-1}{n+4}\)

14 tháng 5 2022

`3^(2 + n) và 2^(3 + n) `

`3^(2 + n) = 3^2 xx 3^n = 9 xx 3^n`

`2^(3 + n) = 2^3 xx 2^n = 8 xx 2^n`

ta thấy `9>8   ; 3^n > 2^n `

vậy `3^(2 + n) > 2^(3 + n) `

14 tháng 5 2022

\(\left\{{}\begin{matrix}3^{2+n}=3^2\times3^n=9\times3^n\\2^{3+n}=2^3\times2^n=8\times2^n\end{matrix}\right.\)

ta có 

\(\left\{{}\begin{matrix}9>8\\3^n>2^n\end{matrix}\right.\)

\(=>3^{2+n}>2^{3+n}\)

9 tháng 6 2017

a). n/n+1  < n+2/n+3 

b). n/n+3 > n−1/n+4 

c). n/2n+1 < 3n+1/6n+3 

k mk nha

9 tháng 6 2017

\(\frac{n}{n+1}< 1\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}=\frac{n+2}{n+3}\)

=>n/n+1<n+2/n+3

vậy........

b)\(\frac{n}{n+3}>\frac{n}{n+4}>\frac{n-1}{n+4}\Rightarrow\frac{n}{n+3}>\frac{n}{n+4}\)

vậy.....

c)\(\frac{n}{2n+1}=\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)

vậy.......

Cách 1 :

Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)

          \(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)

Cộng theo từng vế ( 1) và ( 2 ) ta được :

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)

VẬY \(A>B\)

CÁCH 2

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)

   \(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)

VẬY A>B  

Chúc bạn học tốt ( -_- )

HQ
Hà Quang Minh
Giáo viên
7 tháng 10 2023

a) \(\frac{{ - 21}}{{10}}\) < 0

b) \(\frac{{ - 5}}{{ - 2}} = \frac{5}{2} > 0\). Vậy \(\frac{{ - 5}}{{ - 2}} > 0\).

c) \(\frac{{ - 5}}{{ - 2}} = \frac{5}{2} > 0\), mà \(\frac{{ - 21}}{{10}} < 0\)

Vậy \(\frac{{ - 5}}{{ - 2}} > \frac{{ - 21}}{{10}}\).

a: \(-\dfrac{21}{10}< 0\)

b: \(0< -\dfrac{5}{-2}\)

c: \(-\dfrac{21}{10}< 0< \dfrac{-5}{-2}\)