K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
BM
1
LK
0
TG
1
24 tháng 1 2022
Bài 1
a: 11/12=1-1/12
23/24=1-1/24
mà -1/12>-1/24
nên 11/12>23/24
b: -3/20=-9/60
-7/12=-35/60
mà -9>-35
nên -3/20>-7/12
BT
4
22 tháng 2 2018
b, đề phải là A = 3^450 chứ bạn ơi
Có : A = 3^450 = (3^3)^150 = 27^150
B = 5^300 = (5^2)^150 = 25^150
Vì 27^150 > 25^150 => 3^450 > 5^300
Tk mk nha
22 tháng 2 2018
a, Có : 2A = 2+2^2+.....+2^10
A = 2A-A = (2+2^2+.....+2^10)-(1+2+2^2+.....+2^9) = 2^10-1
=> A < B
NT
2
18 tháng 4 2022
A=1/2+1/22+1/23+...+1/22020+1/22021 > B=1/3+1/4+1/5+13/60
26 tháng 8 2021
a: Ta có: \(3^{2020}=3^{2018}\cdot3^2=3^{2018}\cdot9\)
mà 9<10
nên \(3^{2020}< 10\cdot3^{2018}\)
`3^(2 + n) và 2^(3 + n) `
`3^(2 + n) = 3^2 xx 3^n = 9 xx 3^n`
`2^(3 + n) = 2^3 xx 2^n = 8 xx 2^n`
ta thấy `9>8 ; 3^n > 2^n `
vậy `3^(2 + n) > 2^(3 + n) `
\(\left\{{}\begin{matrix}3^{2+n}=3^2\times3^n=9\times3^n\\2^{3+n}=2^3\times2^n=8\times2^n\end{matrix}\right.\)
ta có
\(\left\{{}\begin{matrix}9>8\\3^n>2^n\end{matrix}\right.\)
\(=>3^{2+n}>2^{3+n}\)