Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A>1
B<1
bvaif này dễ lần sau sẽ có bài khó hơn là nó ko CMR đc a lớn hơn hay bé hơn 1
\(a,\Rightarrow2A=2+2^2+...+2^{2011}\)
\(\Rightarrow2A-A=2+2^2+...+2^{2011}-2^0-2-..-2^{2010}\)
\(\Rightarrow A=2^{2011}-1=B\)
\(b,A=2019.2011=\left(2010-1\right)\left(2010+1\right)=\left(2010-1\right).2010+\left(2010-1\right)=2010^2-2010+2010-1=2010^2-1< 2010^2=B\)
\(a,\Rightarrow2A=2^1+2^2+...+2^{2011}\\ \Rightarrow2A-A=A=2^{2011}-2^0=2^{2011}-1=B\)
\(b,A=\left(2010-1\right)\left(2010+1\right)=2010^2+2010-2010-1=2010^2-1< 2010^2=B\)
Giải:
a) A=1718+1/1719+1
17A=1719+17/1719+1
17A=1719+1+16/1719+1
17A=1+16/1719+1
Tương tự:
B=1717+1/1718+1
17B=1718+17/1718+1
17B=1718+1+16/1718+1
17B=1+16/1718+1
Vì 16/1719+1<16/1718+1 nên 17A<17B
⇒A<B
b) A=108-2/108+2
A=108+2-4/108+2
A=1+-4/108+2
Tương tự:
B=108/108+4
B=108+4-4/108+1
B=1+-4/108+1
Vì -4/108+2>-4/108+1 nên A>B
c)A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-3>2/2010-1 nên B>A
⇒A<B
Chúc bạn học tốt!
17A=1719+1+16/1719+1
17A=1+16/1719+1
phần in nghiêng mình không hiểu lắm, bn giải thích cho mình được ko?
Ta có: A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 18.19.20
=> 4A = 4(1.2.3 + 2.3.4 + 3.4.5 + ... + 18.19.20)
=> 4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +...... +18.19.20.4
=> 4A = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2) +..... +18.19.20.(21 - 17)
=> 4A = 1.2.3.4 + 2.3.4.5 - 2.3.4 + 3.4.5.6 - 2.3.4.5 + ..... + 17.18.19.20 - 17.18.19.20
=> 4A =18.19.20
=> 4A = 6840
=> A = 1710
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+18.19.20
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+18.19.20)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+18.19.20.(21-17)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+ 18.19.20.21-17.18.19.20
=>A =18.19.20.21
=>A+18.19.20.21/4
=> A=35910
\(M=2+2^2+2^3+...+2^{20}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{19}+2^{20})\\=6+2^2\cdot(2+2^2)+2^4\cdot(2+2^2)+...+2^{18}\cdot(2+2^2)\\=6+2^2\cdot6+2^4\cdot6+...+2^{18}\cdot6\\=6\cdot(1+2^2+2^4+...+2^{18})\)
Vì \(6\cdot(1+2^2+2^4+...+2^{18})\vdots6\)
nên \(M\vdots6\)
Vậy \(M\vdots6\).