\(A=\dfrac{17^{18}+1}{17^{19}+1};B=\dfrac{17^{17}+1}{17^{18}+1}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

a) A=1718+1/1719+1

17A=1719+17/1719+1

17A=1719+1+16/1719+1

17A=1+16/1719+1

Tương tự:

B=1717+1/1718+1

17B=1718+17/1718+1

17B=1718+1+16/1718+1

17B=1+16/1718+1

Vì 16/1719+1<16/1718+1 nên 17A<17B

⇒A<B

b) A=108-2/108+2

    A=108+2-4/108+2

    A=1+-4/108+2

Tương tự:

B=108/108+4

B=108+4-4/108+1

B=1+-4/108+1

Vì -4/108+2>-4/108+1 nên A>B

c)A=2010+1/2010-1

   A=2010-1+2/2010-1

   A=1+2/2010-1

Tương tự:

B=2010-1/2010-3

B=2010-3+2/2010-3

B=1+2/2010-3

Vì 2/2010-3>2/2010-1 nên B>A

⇒A<B

Chúc bạn học tốt!

12 tháng 3 2023

17A=1719+1+16/1719+1

17A=1+16/1719+1

phần in nghiêng mình không hiểu lắm, bn giải thích cho mình được ko?

 

25 tháng 7 2017

\(n\left(n+3\right)=n^2+3n\)

\(\left(n+2\right)\left(n+1\right)=n^2+3n+2\)

\(n^2+3n< n^2+3n+2\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\left(n\in N\right)\)

b) \(\dfrac{n}{2n+1}=\dfrac{3n}{6n+3}< \dfrac{3n+1}{6n+3}\)

c) \(\dfrac{10^8+2}{10^8-1}=1+\dfrac{1}{10^8-1}\)

\(\dfrac{10^8}{10^8-3}=\left(1+\dfrac{3}{10^8-3}\right)\)

\(\dfrac{1}{10^8-1}>\dfrac{3}{10^8-3}\Rightarrow\dfrac{10^8+2}{10^8-1}< \dfrac{10^8}{10^8-3}\)

25 tháng 7 2017

Làm dần dần và làm từ từ, suy ra được nhiều cách giải.

a) \(\dfrac{n}{n+1}\)\(\dfrac{n+2}{n+3}\)

+ Cách 1:

\(\dfrac{n}{n+1}=\dfrac{n+1-1}{n+1}=1-\dfrac{1}{n+1}\)

\(\dfrac{n+2}{n+3}=\dfrac{n+3-1}{n+3}=1-\dfrac{1}{n+3}\)

\(\dfrac{1}{n+1}>\dfrac{1}{n+3}\) nên \(1-\dfrac{n}{n+1}< 1-\dfrac{1}{n+3}\)

\(\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)

+ Cách 2:

Ta so sánh: \(n\left(n+3\right)\)\(\left(n+1\right)\left(n+2\right)\)

\(n\left(n+3\right)=nn+3n=n^2+3n\)

\(\left(n+1\right)\left(n+2\right)=\left(n+1\right)n+\left(n+1\right).2=n^2+n+2n+2=n^2+3n+2\)

\(n^2+3n< n^2+3n+2\) nên \(\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)

b) \(\dfrac{n}{2n+1}\)\(\dfrac{3n+1}{6n+3}\)

Ta so sánh: \(n\left(6n+3\right)\)\(\left(2n+1\right)\left(3n+1\right)\)

\(n\left(6n+3\right)=n.6n+3n=6n^2+3n\)

\(\left(2n+1\right)\left(3n+1\right)=\left(2n+1\right)3n+\left(2n+1\right)=6n^2+3n+2n+1=6n^2+5n+1\)

\(6n^2+3n< 6n^2+5n+1\) nên \(\dfrac{n}{2n+1}< \dfrac{3n+1}{6n+3}\)

c) \(\dfrac{10^8+2}{10^8-1}\)\(\dfrac{10^8}{10^8-3}\)

\(\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)

\(\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)

\(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\) nên \(\dfrac{10^8+2}{10^8-1}>\dfrac{10^8}{10^8-3}\)

d) \(\dfrac{3^{17}+1}{3^{20}+1}\)\(\dfrac{3^{20}+1}{3^{23}+1}\)

(đang tìm cách làm, và thêm vài cách khác)

20 tháng 3 2017

d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B

cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A

Suy ra B>A(chuc ban hoc goi nhe)

a) (1/7.x-2/7).(-1/5.x-2/5)=0

=> 1/7.x-2/7=0hoặc-1/5.x-2/5=0

*1/7.x-2/7=0

1/7.x=0+2/7

1/7.x=2/7

x=2/7:1/7

x=2

b)1/6.x+1/10.x-4/5.x+1=0

(1/6+1/10-4/5).x+1=0

(1/6+1/10-4/5).x=0-1

(1/6+1/10-4/5).x=-1

(-8/15).x=-1

x=-1:(-8/15) =15/8

27 tháng 2 2019

1 )Ta có

\(M=\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right).....\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{3}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{4}{3}\cdot\dfrac{-3}{4}\cdot\dfrac{5}{4}\cdot\cdot\cdot\cdot\dfrac{-99}{100}\cdot\dfrac{101}{100}\)

\(=\dfrac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot3\cdot\left(-4\right)\cdot4\cdot\left(-5\right)\cdot5....\cdot\left(-100\right)\cdot100\cdot101}{2^2\cdot3^2\cdot4^2....\cdot100^2}\)

\(=-\dfrac{101}{200}< \dfrac{1}{2}\)

2 ) Số phân số của biểu thức B là 180 phân số

Ta có

\(\dfrac{1}{20}>\dfrac{1}{200};\dfrac{1}{21}>\dfrac{1}{200};\dfrac{1}{22}>\dfrac{1}{200};....;\dfrac{1}{199}>\dfrac{1}{200}\)

\(\Rightarrow B=\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}>\dfrac{1}{200}\cdot180=\dfrac{9}{10}\)

21 tháng 4 2017

Vì 18/91 < 18/90 =1/5

23/114>23115=1/5

vậy 18/91<1/5<23/114

suy ra 18/91<23/114

21 tháng 4 2017

vì 21/52=210/520

Mà 210/520=1-310/520

213/523=1-310/523

310/520>310/523

vậy 210/520<213/523

suy ra 21/52<213/523

13 tháng 3 2018

a,A<B

b,A,<B

c,A<B

13 tháng 3 2018

a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)

c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:

 \(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

Vậy A < B

b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)

\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)

mà \(10^7-8< 10^8-7\)

nên A>B

c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)

\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)

mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)

nên A<B

12 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\left(n\in N\right)\)

\(B=\dfrac{10^{20}+1}{10^{21}+1}< 1\)

\(B< \dfrac{10^{20}+1+9}{10^{21}+1+9}\Rightarrow B< \dfrac{10^{20}+10}{10^{21}+10}\Rightarrow B< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\Rightarrow B< \dfrac{10^{19}+1}{10^{20}+1}=A\)\(\Rightarrow B< A\)