Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\frac{1}{9}.3^4.3^n=3^7\)
\(\frac{1}{9}.81.3^n=3^7\)
\(9.3^n=3^7\)
\(3^2.3^n=3^7\)
\(\Rightarrow2+n=7\)
\(\Rightarrow n=5\)
#~Will~be~Pens~#
a) Ta có: \(\frac{1}{9}\cdot27^n=3^n\)
\(\Leftrightarrow\frac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)
\(\Leftrightarrow3^{3n}=3^{n+2}\)
\(\Rightarrow3n=n+2\)
\(\Rightarrow n=1\)
b) Ta có: \(3^2.3^4.3^n=3^7\)
\(\Rightarrow3^n=3\)
\(\Rightarrow n=1\)
c) Ta có: \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Leftrightarrow2^n\cdot\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
d) Ta có: \(32^{-n}.16^n=2048\)
\(\Leftrightarrow\frac{1}{2^{5n}}\cdot2^{4n}=2^{11}\)
\(\Leftrightarrow2^{4n}=2^{5n+11}\)
\(\Rightarrow4n=5n+11\)
\(\Rightarrow n=-11\)
17/5×1/2×10/17×-1/8
17/10×-10/136
-170/1360
-1/8
5/54+10/63+5/63+15/63
5/54+15/63+15/63
5/54+30/63
315/3402+1620/3402
1935/3402
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
Trl :
\(\frac{1}{9}.27^n=3^{n+2}\)
\(3^{-2}.\left(3^3\right)^n=3^{n+2}\)
\(3^{-2}.3^{3n}=3^{n+2}\)
\(\Rightarrow-2+3n=n+2\)
\(\Rightarrow3n=n+4\)
\(\Rightarrow2n=4\)\(\Rightarrow n=2\)
Hok tốt
Trl :
\(\frac{1}{9}3^4.3^n=3^7\)
\(3^{-2}.3^4.3^n=3^7\)
\(\Rightarrow-2+4+n=7\)
\(\Rightarrow2+n=7\)
\(\Rightarrow n=7-2\)
\(\Rightarrow n=5\)
Hok tốt !