Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :M=\(\frac{2012^{37}+37^{2012}+1}{2012^{38}}\)=\(\frac{1}{2012}\)+\(\frac{37^{2012}}{2018^{38}}\)+\(\frac{1}{2012^{38}}\)
N=\(\frac{2012^{38}+37^{2012}+2}{2012^{39}}\)=\(\frac{1}{2012}\)+\(\frac{37^{2012}}{2012^{39}}\)+\(\frac{2}{2012^{39}}\)
Suy ra: M-N=\(\frac{37^{2012}}{2012^{38}}\left(1-\frac{1}{2012}\right)\)+\(\frac{1}{2012^{38}}\left(1-\frac{2}{2012}\right)\)
\(\Rightarrow\)M-N=\(\frac{37^{2012}}{2012^{38}}.\frac{2011}{2012}+\frac{1}{2012^{38}}.\frac{2010}{2012}\)
\(\Rightarrow\)M-N>0
\(\Rightarrow\)M>N
Vậy M>N
Đặt \(A=\frac{37^{2013}+1}{37^{2012}+1}\) và \(B=\frac{37^{2014}+1}{37^{2013}+1}\) ta có :
\(\frac{1}{37}A=\frac{37^{2013}+1}{37^{2013}+37}=\frac{37^{2013}+37-36}{37^{2013}+37}=\frac{37^{2013}+37}{37^{2013}+37}-\frac{36}{37^{2013}+37}=1-\frac{36}{37^{2013}+37}\)
\(\frac{1}{37}B=\frac{37^{2014}+1}{37^{2014}+37}=\frac{37^{2014}+37-36}{37^{2014}+37}=\frac{37^{2014}+37}{37^{2014}+37}-\frac{36}{37^{2014}+37}=1-\frac{36}{37^{2014}+37}\)
Vì \(\frac{36}{37^{2013}+37}>\frac{36}{37^{2014}+37}\) nên \(1-\frac{36}{37^{2013}+37}< 1-\frac{36}{37^{2014}+37}\)
\(\Rightarrow\)\(\frac{1}{37}A< \frac{1}{38}B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
ÁP DỤNG CÔNG THỨC NẾU \(\frac{a}{b}\)>1 thì
\(\frac{a}{b}\)>\(\frac{a+m}{b+m}\)
Ta có : \(\frac{2012^{12}+1}{2012^{13}+1}\)>\(\frac{2012^{12}+1+2011}{2012^{13}+1+2011}\)=\(\frac{2012^{12}+2012}{2012^{13}+2012}\)=\(\frac{2012.\left(2012^{11}+1\right)}{2012.\left(2012^{12}+1\right)}\)
rồi rút gọn thành \(\frac{2012^{11}+1}{2012^{12}+1}=B\)
Vậy A>B
Nhớ cho mình đúng nha
Ta có:\(A=\dfrac{2012^{2012}+1}{2012^{2013}+1}\)
\(\Rightarrow2012.A=\dfrac{2012^{2013}+2012}{2012^{2013}+1}=\dfrac{2012^{2013}+1+2011}{2012^{2013}+1}=1+\dfrac{2011}{2012^{2013}+1}\)Ta có:\(B=\dfrac{2012^{2011}+1}{2012^{2012}+1}\)
\(\Rightarrow2012.B=\dfrac{2012^{2012}+2012}{2012^{2012}+1}=\dfrac{2012^{2012}+1+2011}{2012^{2012}+1}=1+\dfrac{2011}{2012^{2012}+1}\)Vì\(\dfrac{2011}{2012^{2013}+1}< \dfrac{2011}{2012^{2012}+1}\)
\(\Rightarrow1+\dfrac{2011}{2012^{2013}+1}< 1+\dfrac{2011}{2012^{2012}+1}\)
\(\Rightarrow\dfrac{2012^{2012}+1}{2012^{2013}+1}< \dfrac{2012^{2011}+1}{2012^{2012}+1}\)
Vậy A<B
\(10A=\frac{2012^{2013}+10}{2012^{2013}+1}=\frac{2012^{2013}+1+9}{2012^{2013}+1}=1+\frac{9}{2012^{2013}+1}\)
\(10B=\frac{2012^{2012}+10}{2012^{2012}+1}=\frac{2012^{2012}+1+9}{2012^{2012}+1}=1+\frac{9}{2012^{2012}+1}\)
Vì \(\frac{9}{2012^{2013}+1}<\frac{9}{2012^{2012}+1}\Rightarrow10A<10B\Rightarrow A\)
Vậy A<B
ta co A=\(\frac{2012^{2012}+1}{2012^{2013}+1}< \frac{2012^{2012}+1+2011}{2012^{2013}+1+2011}\)=\(\frac{2012^{2012}+2012}{2012^{2013}+2012}=\frac{2012\left(2012^{2011}+1\right)}{2012\left(2012^{2012}+1\right)}\)
=>A<B
A=\(\frac{2012^{2012}+1}{2012^{2013}+1}\)
\(\Rightarrow\)A<\(\frac{2012^{2012}+1+2011}{2012^{2013}+1+2011}\)
<\(\frac{2012^{2012}+2012}{2012^{2013}+2012}\)
<\(\frac{2012\left(2012^{2011}+1\right)}{2012\left(2012^{2012}+1\right)}\)
<\(\frac{2012^{2011}+1}{2012^{2012}+1}\)
<B
Vậy A<B
Ta có \(B=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}\)
Lại có: \(\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}\) ( ngoặc 2 dòng này lại nhé dòng này và dòng trên)
\(\Rightarrow B>A\)