Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài của bạn là: \(\frac{37^{38}+5}{37^{39+5}}\)hay\(\frac{37^{38}+5}{37^{39}+5}\)
a, Ta có : \(7x+4y⋮37\)
\(\Rightarrow23\left(7x+4y\right)⋮37\)
\(\Rightarrow161x+92y⋮37\)
\(\Rightarrow\left(13x+18y\right)+148x+74y⋮37\)
Mà \(\hept{\begin{cases}148x⋮37\\74x⋮37\end{cases}\Rightarrow13x+18y⋮37}\)
Vậy \(13x+18y⋮37\)
b, Ta có : \(A=\frac{2014^{2012}+1}{2014^{2013}+1}\)
\(\Rightarrow2014A=\frac{2014^{2013}+2014}{2014^{2013}+1}=\frac{2014^{2013}+1+2013}{2014^{2013}+1}=1+\frac{2013}{2014^{2013}+1}\)
Ta có : \(B=\frac{2014^{2011}+1}{2014^{2012}+1}\)
\(\Rightarrow2014B=\frac{2014^{2012}+2014}{2014^{2012}+1}=\frac{2014^{2012}+1+2013}{2014^{2012}+1}=1+\frac{2013}{2014^{2012}+1}\)
Vì \(2014^{2013}+1>2014^{2012}+1\)
\(\Rightarrow\frac{1}{2014^{2013}+1}< \frac{1}{2014^{2012}+1}\Rightarrow1+\frac{1}{2014^{2013}+1}< 1+\frac{1}{2014^{2012}+1}\)
\(\Rightarrow2014A< 2014B\Rightarrow A< B\)
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
\(\frac{2014^{2013}+1}{2014^{2013}-13}\)lớn hơn 1 là \(\frac{14}{2014^{2013}-13}\)
\(\frac{2014^{2012}+8}{2014^{2012}-11}\)lớn hơn 1 là \(\frac{19}{2014^{2012}-11}\)
\(\frac{14}{2014^{2013}-13}\)\(< \)\(\frac{19}{2014^{2012}-11}\)
\(\Rightarrow A< B\)
\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)
\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)
\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Vậy M>N
Đặt \(A=\frac{37^{2013}+1}{37^{2012}+1}\) và \(B=\frac{37^{2014}+1}{37^{2013}+1}\) ta có :
\(\frac{1}{37}A=\frac{37^{2013}+1}{37^{2013}+37}=\frac{37^{2013}+37-36}{37^{2013}+37}=\frac{37^{2013}+37}{37^{2013}+37}-\frac{36}{37^{2013}+37}=1-\frac{36}{37^{2013}+37}\)
\(\frac{1}{37}B=\frac{37^{2014}+1}{37^{2014}+37}=\frac{37^{2014}+37-36}{37^{2014}+37}=\frac{37^{2014}+37}{37^{2014}+37}-\frac{36}{37^{2014}+37}=1-\frac{36}{37^{2014}+37}\)
Vì \(\frac{36}{37^{2013}+37}>\frac{36}{37^{2014}+37}\) nên \(1-\frac{36}{37^{2013}+37}< 1-\frac{36}{37^{2014}+37}\)
\(\Rightarrow\)\(\frac{1}{37}A< \frac{1}{38}B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(A< B\)
Chúc bạn học tốt\(\approx\)