Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=20^10+1/20^10-1
A=20^10-1+2/20^10-1
A=20^10-1/20^10-1+2/20^10-1
A=1+2/20^10-1
B=20^10-1/20^10-3
B=20^10-3+2/20^10-3
B=20^10-3/20^10-3+2/20^10-3
B=1+2/20^10-3
Vì 20^10-1>20^10-3 nên 2/20^10-1<2/20^10-3
=>A<B
Ta có: \(20^{10}-1>20^{10}-3\)
\(\Rightarrow\frac{20^{10}-1}{20^{10}-3}>1\)
\(\Rightarrow\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-3+2}=\frac{20^{10}+1}{20^{10}-1}=B\)
Vậy \(A>B\)
Giải:
a) A=1718+1/1719+1
17A=1719+17/1719+1
17A=1719+1+16/1719+1
17A=1+16/1719+1
Tương tự:
B=1717+1/1718+1
17B=1718+17/1718+1
17B=1718+1+16/1718+1
17B=1+16/1718+1
Vì 16/1719+1<16/1718+1 nên 17A<17B
⇒A<B
b) A=108-2/108+2
A=108+2-4/108+2
A=1+-4/108+2
Tương tự:
B=108/108+4
B=108+4-4/108+1
B=1+-4/108+1
Vì -4/108+2>-4/108+1 nên A>B
c)A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-3>2/2010-1 nên B>A
⇒A<B
Chúc bạn học tốt!
17A=1719+1+16/1719+1
17A=1+16/1719+1
phần in nghiêng mình không hiểu lắm, bn giải thích cho mình được ko?
A-B= 20^10+1/20^10-1-20^10+1/20^10+3 =2/20^10+2>0
A-B>0 => A>B.
Có cách 2 nữa nhá:
A= (2010+1) / (2010-1) = 1 + (2/ (2010-1))>1
B= (2010-1)/ (2010-3) =1- (2/(2010-3))<1
Từ đó → A>B
Giải:
Ta có:
A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-1<2/2010-3 nên A<B
Chúc bạn học tốt!
Lời giải:
$A=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}$
$B=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}$
Vì $20^{10}-1> 20^{10}-3$
$\Rightarrow \frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}$
$\Rightarrow 1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}$
$\Rightarrow A< B$
\(A=\frac{2010+1}{2010-1}\)
\(A=1+\frac{2}{2010-1}>1\)
\(B=\frac{2010-1}{2010-3}\)
\(B=1-\frac{2}{2010-3}<1\)
Từ đó A > B
Ta thấy:\(A=\frac{20^{10}+1}{20^{10}-1}>1\)
Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}>\frac{20^{10}+1-2}{20^{10}-1-2}=\frac{20^{10}-1}{20^{10}-3}=B\)
Vậy \(A>B\)
Ta có:
\(A=\frac{20^{10}+1}{20^{10}-1}\)
\(=\frac{20^{10}-1+2}{20^{10}-1}\)
\(=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}\)
\(=\frac{20^{10}-3+2}{20^{10}-3}\)
\(=1+\frac{2}{20^{10}-3}\)
Ta lại có:
\(20^{10}-1>20^{10}-3\)
\(\Rightarrow\)\(\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}\)
\(\Rightarrow\)\(1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}\)
Vậy ta kết luận A < B