Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)
\(37^{1320}=\left(37^2\right)^{660}=1329^{660}\)
Vì \(1329^{660}>1331^{660}\) nên \(11^{1979}< 37^{1320}\)
Bài của bạn bị nhầm chỗ này nhé: 1329660 < 1331660
Sửa đề: \(37^{1320}\)
Ta có: \(11^{1979}< 11^{1980}=11^{3\cdot660}=1331^{660}\)
\(37^{1320}=37^{2\cdot660}=1369^{660}\)
mà \(1331^{660}< 1369^{6060}\)
nên \(11^{1979}< 37^{1320}\)
\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)
b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)
a: 99^20=9801^10<9999^10
b: 3^500=243^100
5^300=125^300
=>3^500>5^300
b)
a = 25.26 261 = 25.(26 260 +1) = 25.10.2626 + 25 = 25.10.26.101 + 25
b = 26.25 251 = 26.(25 250 + 1) = 26.10.2525 + 26 = 26.10.25.101 + 26
Suy ra a < b
a) \(5^{48}=\left(5^4\right)^{12}=625^{12}\)
\(2^{108}=\left(2^9\right)^{12}=512^{12}\)
Do \(625>512\Rightarrow625^{12}>512^{12}\) \(\Rightarrow5^{48}>2^{108}\) (1)
Lại có: \(108>105\Rightarrow2^{108}>2^{105}\) (2)
Từ (1) và (2) \(\Rightarrow5^{48}>2^{105}\)
b) \(2^{50}=\left(2^5\right)^{10}=32^{10}\)
Do \(33>32\Rightarrow33^{10}>32^{10}\)
Vậy \(33^{10}>2^{50}\)
c) Do \(513>512\Rightarrow513^{100}>512^{100}\) (1)
\(512^{100}=\left(2^9\right)^{100}=2^{900}\) \(=2^{10.90}=\left(2^{10}\right)^{90}=1024^{90}\) (2)
Do \(1024>1023\Rightarrow1024^{90}>1023^{90}\) (3)
Từ (1), (2) và (3) \(\Rightarrow513^{100}>1023^{90}\)
\(3^{99}=\left(3^3\right)^{33}=27^{33}>27^{21}>11^{21}\\ 16^x< 128^4\\ \Rightarrow\left(2^4\right)^x< \left(2^7\right)^4\\ \Rightarrow2^{4x}< 2^{28}\Rightarrow4x< 28\Rightarrow x< 7\)
a) `14/21=(14:7)/(21:7)=2/3=4/6`
`60/72=(60:12)/(72:12)=5/6`
Vì `4/6 <5/6`
`=> 14/21 < 60/72`
b) `22/37 = (22:2)/(37:2)= 11/(37/2)`
Vì `54 > 37/2`
`=> 11/54 < 22/37`
a)
\(\dfrac{-2}{3}\)>\(\dfrac{5}{-8}\)
b)
\(\dfrac{398}{-412}\)<\(\dfrac{-25}{-137}\)
c)
\(\dfrac{-14}{21}\)<\(\dfrac{60}{72}\)
\(a,2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\) nên \(2^{300}< 3^{200}\)
\(b,8^5=32768\)
\(6^6=46656\)
Vì \(32768< 46656\) nên \(8^5< 6^6\)
\(c,3^{450}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
Vì \(27^{150}>25^{150}\) nên \(3^{450}>5^{300}\)
#Ayumu
a) \(11^{1979}<11^{1980}=\left(11^3\right)^{660}=1331^{660}\)
\(37^{1320}=\left(37^2\right)^{600}=1369^{600}\)
\(1369^{660}>1331^{660}\Rightarrow11^{1979}<37^{1320}\)
b) \(1990^{10}+1990^9=1990^9\left(1990+1\right)=1990^9.1991<1991^9.1991\)
\(\Rightarrow1990^{10}+1990^9<1991^{10}\)
Vậy \(1990^{10}+1990^9<1991^{10}\)
a)111979<371320
b)199010+19909<199110