Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)
Theo đề ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(=>\frac{10^{11}-1}{10.10^{11}-1}\)
\(=>1+\frac{1}{10}\)
\(=>A>1\)
\(B=\frac{10^{10}-1}{10^{11}-1}\)
\(=>\frac{10^{10}-1}{10.10^{10}-1}\)
\(=>1+\frac{1}{10}\)
\(=>B>1\)
Mà B > 1 ; A > 1 và \(\frac{1}{10}=\frac{1}{10}\)
\(=>A=B\)
_Hok tốt_