K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2021

\(8^2=64=32+2\sqrt{16^2}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=32+2\sqrt{15.17}=32+2\sqrt{\left(16-1\right)\left(16+1\right)}\)

\(=32+2\sqrt{16^2-1}\)

\(< =>8^2>\left(\sqrt{15}+\sqrt{17}\right)^2\)

\(8>\sqrt{15}+\sqrt{17}\)

\(\left(\sqrt{2019}+\sqrt{2021}\right)^2=4040+2\sqrt{2019.2021}\)

\(=4040+2\sqrt{\left(2020-1\right)\left(2020+1\right)}=4040+2\sqrt{2020^2-1}\)

\(\left(2\sqrt{2020}\right)^2=8080=4040+2\sqrt{2020^2}\)

\(< =>\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

mik chọn điền

mik lười chép ại đề bài 

7 tháng 8 2021

Ta có \(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\sqrt{4076360}\) và \(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)

Mà \(\left(2\sqrt{4076360}\right)^2=16305440\) và \(4038^2=16305444\)

\(\Rightarrow2\sqrt{4076360}< 4038\)

\(\Rightarrow\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)

\(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\cdot\sqrt{2018\cdot2020}\)

\(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)

mà \(2\cdot\sqrt{2018\cdot2020}< 4038\)

nên \(\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)

10 tháng 10 2018

Đặt \(A=\left(\sqrt{2018}+\sqrt{2020}\right)\)

\(\Rightarrow A^2=2018+2\sqrt{2018.2020}+2020=4038+\sqrt{4.2018.2020}=4038+\sqrt{4.\left(2019^2-1\right)}\)

Đặt \(B=2\sqrt{2019}=\sqrt{4.2019}\)

\(B^2=4.2019=2.2019+2.2019=4038+\sqrt{4.2019^2}\)

=> \(\sqrt{4.2019^2}>\sqrt{4.\left(2019^2-1\right)}\)

\(\Rightarrow A>B\Leftrightarrow\sqrt{2018}+\sqrt{2020}>2\sqrt{2019}\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:

$\sqrt{15}< \sqrt{16}=4$

$\sqrt{17}< \sqrt{25}=5$

$\Rightarrow \sqrt{15}+\sqrt{17}< 9< 16$

2 tháng 8 2019

Giả sử \(8< \sqrt{15}+\sqrt{17}\)

\(\Leftrightarrow64< 15+2\sqrt{15.17}+17\)(Bình phương hai vế)

\(\Leftrightarrow32< 2\sqrt{15.17}\)

\(\Leftrightarrow16< \sqrt{15.17}\)

\(\Leftrightarrow16< \sqrt{\left(16-1\right)\left(16+1\right)}\)

\(\Leftrightarrow\sqrt{16^2}< \sqrt{16^2-1}\)

\(\Leftrightarrow16^2< 16^2-1\)(vô lí)

Chứng minh tương tự điều giả sử \(8=\sqrt{15}+\sqrt{17}\)

Vậy \(8>\sqrt{15}+\sqrt{17}\)

https://olm.vn/hoi-dap/detail/61596070678.html

bn coppy link này nhé, có bài mak bn đang cần đấy

4 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

24 tháng 10 2016

Giả sử \(8>\sqrt{15}+\sqrt{17}\)

\(\Leftrightarrow64>32+2\sqrt{15×17}\)

\(\Leftrightarrow16>\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\left(dung\right)\)

Vậy \(8>\sqrt{15}+\sqrt{17}\)

8 tháng 10 2018

dsadasdsadsadsasddấdasdasdadấdadsdsđasdasđdsaádasdasdádaddadadaddadadaddâdadaad

19 tháng 9 2021

\(a,\left(\sqrt{\sqrt{3}}\right)^4=3< 4=\left(\sqrt{2}\right)^4\Rightarrow\sqrt{\sqrt{3}}< \sqrt{2}\\ b,\left(\sqrt{2\sqrt{3}}\right)^4=12< 18=\left(\sqrt{3\sqrt{2}}\right)^4\Rightarrow\sqrt{2\sqrt{3}}=\sqrt{3\sqrt{2}}\\ c,\left(2+\sqrt{6}\right)^2=8+4\sqrt{6};5^2=25=8+17;\left(4\sqrt{6}\right)^2=96< 289=17^2\\ \Rightarrow4\sqrt{6}< 17\Rightarrow2+\sqrt{6}< 5\\ d,\left(7-2\sqrt{2}\right)^2=57-28\sqrt{2};4^2=16=57-41;\left(28\sqrt{2}\right)^2=1568< 41^2=1681\\ \Rightarrow28\sqrt{2}< 41\Rightarrow7-2\sqrt{2}>4\\ e,\left(\sqrt{15}+\sqrt{8}\right)^2=23+4\sqrt{30};7^2=49=23+26;\left(4\sqrt{30}\right)^2=240< 676=26^2\\ \Rightarrow4\sqrt{30}< 26\Rightarrow\sqrt{15}+\sqrt{8}< 7\)

\(f,\left(\sqrt{37}-\sqrt{14}\right)^2=51-2\sqrt{518};\left(6-\sqrt{15}\right)^2=51-12\sqrt{15};\left(2\sqrt{518}\right)^2=2072;\left(12\sqrt{15}\right)^2=2160\\ \Rightarrow2\sqrt{518}< 12\sqrt{15}\Rightarrow\sqrt{37}-\sqrt{14}>6-\sqrt{15}\)

19 tháng 9 2021

em cảm ơn ạ <3

19 tháng 10 2020

 \(^6\sqrt{2019} = b, ^6\sqrt{2020} = a \\ Then, A = a^3 - b^3; B = a^2 -b^2\\ \Rightarrow A > B \)

19 tháng 9 2021

a) \(1=\sqrt{1}< \sqrt{2}\)

b) \(2=\sqrt{4}>\sqrt{3}\)

c) \(6=\sqrt{36}< \sqrt{41}\)

d) \(7=\sqrt{49}>\sqrt{47}\)

e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)

f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)

g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)

h) \(\sqrt{3}>0>-\sqrt{12}\)

i) \(5=\sqrt{25}< \sqrt{29}\)

\(\Rightarrow-5>-\sqrt{29}\)

19 tháng 9 2021

Giỏi quá