K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

a, 97/583 < 13/77

b, \(-\left(\frac{9^{100}+4}{9^{100}-2}\right)< -\left(\frac{9^{100}}{9^{100}-6}\right)\)

chúc bạn hk tốt!!(nhớ k cho mình nha!!@@)

1 tháng 5 2022

help me

1 tháng 5 2022

umm, bn nhân A với 1/7 và nhân B với 1/9, sau đó tính ra và so sánh thôi

 

11 tháng 7 2023

`1024:2^6 +160:(3^3 +53)-9^100 :9^99`

`=2^10 :2^6 +160:(27+53)-9^(100-99)`

`=2^(10-6)+160:80-9^1`

`=2^4 +2-9`

`=16+2-9`

`=18-9`

`=9`

11 tháng 7 2023

\(1024:2^6+160:\left(3^3+53\right)-9^{100}:9^{99}\)

\(=2^{10}:2^6+160:\left(27+53\right)-9^{100-99}\)

\(=2^{10-6}+160:80-9\)

\(=2^4+2-9\)

\(=16+2-9\)

\(=9\)

2 tháng 8 2020

22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)22.10

2n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9

=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9

=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9

=(10n.15−3)2=(10n.15−3)2

Vậy A là Số Chính Phương (đpcm)

k anh nhé

15 tháng 9 2021

Tích trên có đúng 100 thừa số nên n=100

=> 100-n=0 

=> A=0

18 tháng 4 2017

Nhà An dùng vượt quá mức quy định nên giá 1m3 nước là 9100

Vậy tiền nước tháng này của nhà An là :

9100. 26 = 236600 ( đồng )

 Vậy số tiền nước tháng này của nhà An là 236600 ( đồng ) 

30 tháng 11 2017

Một người 1 năm dùng hết số kg gạo là :
250 x 365 = 91250 ( kg )
Bốn người 1 năm dùng hết số kg gạo là :
91250 x 4 = 365000 ( kg )
Đáp số : 365000 k

2 tháng 8 2020

22499....9100....09

=22.10^2n+1 + 4.10^2n +(10n-2 -1).10^n+2 +1.10^n+1 +9

=220.10^2n+4.10^2n+10^2n-10^n+2+10^n+1 +9

=10^2n.225-10^n(100-10)+9

=(10^n.15)^2-90.10^n+9

=(10^n.15-3)^2

13 tháng 8 2020

là n chữ số mak bạn