K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2015

a)Ta có 2222^3333=2222^3x1111=(2222^3)^1111=(1111^3x2^3)^1111=(1111^3x8)^1111

Tương tự:ta có:3333^2222=(1111^3x9)^1111

Vì 8<9 nên 2222^3333<3333^2222

 

30 tháng 7 2016

a<

b>

c>

d>

11 tháng 5 2017

(0.3)40=((0.3)2)20=(0.09)20   Do 0.1>0.09  =>(0.1)20 > (0.09)20   <=> (0.1)20  > (0.3)40

(-5)30=((-5)3)10=(-125)10 =12510        (-3)50=((-3)5)10=(-243)10 =24310      Do 125<243   =>12510 < 24310  <=> (-5)30 < (-3)50

9920=(992)10=980110  do 9801<9999 <=> 980110 < 999910   <=>  9920 < 999910

2112=(213)4=92614  9261>54  => 92614 > 544   <=>  2112 > 544

44443333=((4*1111)3333=43333 * 11113333=641111 * 11113333          33334444=34444 * 11114444=811111 * 11114444 do 641111 < 811111 va 11113 < 11114 nen 44443333 < 33334444

10 tháng 10 2015

Ta có :

\(2222^{3333}=\left(1111^3.8\right)^{1111}\)

\(3333^{2222}=\left(1111^3.9\right)^{1111}\)

Vì 8 < 9 nên 22223333 < 33332222

10 tháng 10 2015

2222^3333=(1111^3.8)^1111

3333^2222=(1111^3.9)

Vì 8<9

=>2222^3333<3333^2222

24 tháng 12 2020

ko hieu tai sao co the dat ra mot cau hoi vo li nhu vay?

deo hieuluon

22 tháng 11 2015

Bài này ta làm như sau: 
Câu a) ta có 4^222= (2^2)222 = 2^(2.222) = (-2)^444 vậy suy ra 4^(222) = (-2)^444 

 

Câu b) Bài toán yêu cầu ta so sánh: (-3333)^4444 và 4444^3333 
Ta có: (-3333)^4444 = (3333)^4444= (3.1111)^(4.1111) =[(3.1111)^4]^1111 
Mặt khác ta có: 4444^3333= (4.1111)^(3.1111) =[(4.1111)^3]^1111 
Đến đây ta so sánh A=(3.1111)^4 với B= (4.1111)^3 
A= (3^4).(1111).(1111)^3 
B=(4^3).(1111)^3 
Đến đây ta lại so sánh (3^4).1111 với 4^3 
Dễ dàng nhận thấy (3^4).1111 > 4^3 =64 
Vậy kết luận 3333^4444 > 4444^3333 
Bài c) Ta có 4^30 =(4^3)^10= 64 ^10 = (4^10).(2^10).(8^10) 
Ta lại có: (3).(24)^10 =(3).(3^10).(8^10) 
Đến đây ta lại so sánh:(4^10).(2^10) với (3).(3^10) 
Dễ dàng nhận thấy 4^10 > 3^10 và 2^10 >3 
Nên suy ra (4^10).(2^10) > (3). (3^10) 
vậy 4^30 > (3).(24^10)

tick với đó

2 tháng 11 2023

                           giải:

ta có: 320=910

mà 333310 lớn hơn 910

vậy 333310 lớn hơn 320

25 tháng 5 2019

Ta thấy : \(2222^{3333}vs2^{300}:\hept{\begin{cases}2222>2\\3333>300\end{cases}\Rightarrow2222^{3333}>2^{300}}\)

Ta thấy : \(2222^{1111}=1111^{1111}.2^{1111}< 1111^{1111}.1111^{1110}=1111^{2221}\)

Ta thấy : \(54^{10}=\left(3^3\right)^{10}.2^{10}=3^{30}.2^{10}=3^{12}.3^{18}.2^{10}>3^{12}.7^{12}=21^{12}.\)

11 tháng 8 2021

bạn học thầy Thiệu à