K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

545002262

28 tháng 9 2020

a) \(\sqrt{x^2}=7\)

\(\Leftrightarrow\left|x\right|=7\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

b) \(\sqrt{\left(x-2020\right)^2}=10\)

\(\Leftrightarrow\left|x-2020\right|=10\)

\(\Leftrightarrow\orbr{\begin{cases}x-2020=10\\x-2020=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2030\\x=2010\end{cases}}\)

28 tháng 9 2020

c) đk: \(x\ge2\)

 \(\sqrt{4}-\left(x-2\right)+3\sqrt{16x-32}=8\)

\(\Leftrightarrow2-x+2+12\sqrt{x-2}=8\)

\(\Leftrightarrow12\sqrt{x-2}=x+4\)

\(\Leftrightarrow144\left(x-2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow x^2-136x+304=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=133,726...\\x_2=2,273...\end{cases}}\)

d) đk: \(x\ge-1\)

 \(\sqrt{25x+25}-2\sqrt{64x+64}=7\)

\(\Leftrightarrow5\sqrt{x+1}-16\sqrt{x+1}=7\)

\(\Leftrightarrow-11\sqrt{x+1}=7\)

Mà \(-11\sqrt{x+1}\le0< 7\left(\forall x\right)\)

=> pt vô nghiệm

4 tháng 7 2021

\(8^2=64=32+2\sqrt{16^2}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=32+2\sqrt{15.17}=32+2\sqrt{\left(16-1\right)\left(16+1\right)}\)

\(=32+2\sqrt{16^2-1}\)

\(< =>8^2>\left(\sqrt{15}+\sqrt{17}\right)^2\)

\(8>\sqrt{15}+\sqrt{17}\)

\(\left(\sqrt{2019}+\sqrt{2021}\right)^2=4040+2\sqrt{2019.2021}\)

\(=4040+2\sqrt{\left(2020-1\right)\left(2020+1\right)}=4040+2\sqrt{2020^2-1}\)

\(\left(2\sqrt{2020}\right)^2=8080=4040+2\sqrt{2020^2}\)

\(< =>\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

mik chọn điền

mik lười chép ại đề bài 

18 tháng 5 2019

bài khó à nha

26 tháng 8 2020

B2:

3) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)

\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{2020}-\sqrt{2019}}{2020-2019}\)

\(=\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{2020}-\sqrt{2019}\)

\(=\sqrt{2020}-1\)