Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
=>A là số hữu tỉ
\(1^2-2^2+3^2-4^2+..+2017^2-2018^2+2019^2\)
\(=1^2+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2019^2-2018^2\right)\)
\(=1+\left(3+2\right)\left(3-2\right)+\left(5+4\right)\left(5-4\right)+...+\left(2019+2018\right)\left(2019-2018\right)\)
\(=1+2+3+4+5+...+2018+2019\)
\(=\left(1+2019\right).2019\)
\(=4078380\)
https://hoc24.vn/hoi-dap/question/954739.html
Làm rồi mà :D
=(1-2)(1+2)+(3-4)(3+4)+...+(2017-2018)(2017+2018)+2019
=-(1+2+3+...+2018)+2019
=\(-\frac{2019.2018}{2}+2019\)
\(=-2019.1009+2019\)
=-1008.2019