K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2019

có:A=2000^2001+1/2000^2002+1

=)2000A=2000^2002+2000/2000^2002+1=2000^2002+1+1999/2000^2002+1

             =1999/2000^2002+1

lại có:B=2000^2000+1/2000^2001+1

=)2000B=2000^2001+2000/2000^2001+1=2000^2001+1+1999/2000^2001+1

             =1999/2000^2001+1

vì 1999/2000^2002+1  <   1999/2000^2001+1

=)2000A   < 2000B hay A<B

8 tháng 2 2019

a)  219 220 + 1 220 = 215 216 + 1 216 = 1

M à       1 220 < 1 216       n ê n     219 220 > 215 216

b)  − 1999 2000 + − 1 2001 = − 2000 2001 + − 1 2001 = − 1

M à     1 220 < 1 216     n ê n     219 220 > 215 216

26 tháng 5 2018

Giải bài 174 trang 67 SGK Toán 6 Tập 2 | Giải toán lớp 6

 

\(2000^{2001}⋮5\)

mà \(2001^{2002}⋮̸5\)

nên \(A⋮̸5\)

29 tháng 7 2016

Ta có:

\(\frac{19992000}{20002000}=\frac{19991999+1}{20002000}=\frac{19991999}{20002000}+\frac{1}{20002000}\)

                                                        \(=\frac{1999}{2000}+\frac{1}{20002000}\)

Vì \(\frac{1999}{2000}< \frac{1999}{2000}+\frac{1}{20002000}\Rightarrow\frac{1999}{2000}< \frac{19992002}{20002000}\)

12 tháng 3 2017

Ta có : \(\frac{19992000}{20002000}\)\(=\)\(\frac{19991999+1}{20002000}\)\(=\)\(\frac{19991999}{20002000}+\frac{1}{20002000}\)

                                                                  \(=\frac{1999}{2000}+\frac{1}{20002000}\)

Vì \(\frac{1999}{2000}< \frac{1999}{2000}+\frac{1}{20002000}=\frac{1999}{2000}< \frac{19992002}{20002000}\)

20 tháng 8 2021

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

20 tháng 8 2021

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

4 tháng 5 2021

Ta có:

\(A=\dfrac{7\left(4-7^{2020}\right)}{7^{2021}}+\dfrac{5+7^{2021}}{7^{2021}}\)

\(A=\dfrac{28-7^{2021}+5+7^{2021}}{7^{2021}}=\dfrac{33}{7^{2021}}\)

Ta có: \(B=\dfrac{7^2}{7^{2021}}=\dfrac{49}{7^{2021}}\)

=> B>A

 

4 tháng 5 2021

Thank you☺

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

8 tháng 7 2023

A = \(\dfrac{n^9+1}{n^{10}+1}\) 

\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n -  \(\dfrac{n-1}{n^9+1}\)

B = \(\dfrac{n^8+1}{n^9+1}\)

\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) =  n - \(\dfrac{n-1}{n^8+1}\)

Vì n > 1 ⇒ n - 1> 0

       \(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)

⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)

⇒ A < B 

 

    

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)