K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Ta có : A= \(\dfrac{1}{1^m}\) +\(\dfrac{1}{1^n}\)

Và B=\(\dfrac{2015-2}{2015^m}+\dfrac{2015+2}{2015^n}\)

\(\Rightarrow\)\(\dfrac{1}{m}-\dfrac{2}{2015^m}+\dfrac{1}{n}+\dfrac{2}{2015^n}\)

\(\Rightarrow\dfrac{1}{n}+\dfrac{1}{m}+\dfrac{2\left(n-m\right)}{2015^{mn}}\)

TH1 2(n-m) >0 \(\Rightarrow\) 2015mn >0 \(\Rightarrow\) A>B

TH2 2(n-m)<0\(\Rightarrow\) 2015mn<0\(\Rightarrow\) A<B

TH3 2(n-m)=0\(\Rightarrow\) 2015mn=0 \(\Rightarrow\) A=B

Xong rồi nấm ơi, bảo uyên nữa nhé

15 tháng 4 2017

Ta có:

M=\(\dfrac{2017^{2015}+1}{2017^{2015}-1}=\dfrac{2017^{2015}-1+2}{2017^{2015}-1}=1+\dfrac{2}{2017^{2015}-1}>1\left(1\right)\)

N=\(\dfrac{2017^{2015}-5}{2017^{2015}-3}=\dfrac{2017^{2015}-3-2}{2017^{2015}-3}=1-\dfrac{2}{2017^{2015}-3}< 1\left(2\right)\)

Từ (1) và (2) suy ra M>1>N

Vậy M>N.

14 tháng 4 2017

Ta có :

\(\dfrac{2017^{2015}+1}{2017^{2015}-1}>\dfrac{2017^{2015}}{2017^{2015}}>\dfrac{2017^{2015}-5}{2017^{2015}-3}\)

Tick mình nha bạn hiền.

29 tháng 1 2022

Ta có :

\(N=\dfrac{-7}{10^{2005}}+\dfrac{-15}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-7}{10^{2006}}+\dfrac{-8}{10^{2006}}=-7\left(\dfrac{1}{10^{2005}}+\dfrac{1}{10^{2006}}\right)+\dfrac{-8}{10^{2006}}\)

\(M=\dfrac{-15}{10^{2005}}+\dfrac{-7}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-8}{10^{2005}}+\dfrac{-7}{10^{2006}}=-7\left(\dfrac{1}{10^{2005}}+\dfrac{1}{10^{2006}}\right)+\dfrac{-8}{10^{2005}}\)

Lại có :

\(-\dfrac{8}{10^{2006}}>\dfrac{-8}{10^{2005}}\Leftrightarrow M>N\)

9 tháng 5 2016

\(B=\frac{215-2}{2015^m}+\frac{2015+2}{2015^n}=\frac{2015}{2015^m}-\frac{2}{2015^m}+\frac{2015}{2015^n}+\frac{2}{2015^n}=A-2\left(\frac{1}{2015^m}-\frac{1}{2015^n}\right)\)

+ Nếu \(m>n\Rightarrow2015^m>2015^n\Rightarrow\frac{2}{2015^m}<\frac{2}{2015^n}\Rightarrow\frac{2}{2015^m}-\frac{2}{2015^n}<0\Rightarrow A-\left(\frac{2}{2015^m}-\frac{2}{2015^n}\right)>A\)

=> A<B

+ Nếu

m<n làm tương tự => A>B

14 tháng 1 2018

Mấy bài dễ u tự giải quyết nha

3) \(\dfrac{2013}{2014}+\dfrac{2014}{2015}+\dfrac{2015}{2013}\)

\(=\left(1-\dfrac{1}{2014}\right)+\left(1-\dfrac{1}{2015}\right)+\left(1+\dfrac{2}{2013}\right)\)

\(=3+\dfrac{2}{2013}-\dfrac{1}{2014}-\dfrac{1}{2015}\)

\(=3+\left(\dfrac{1}{2013}-\dfrac{1}{2014}\right)+\left(\dfrac{1}{2013}-\dfrac{1}{2015}\right)>3\)

15 tháng 3 2018

\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2013+2013}=\dfrac{1}{2}\)

Tương tự cộng theo vế suy ra đpcm

16 tháng 3 2018

tệ quá bạn ơi