\(\dfrac{x}{2015-z}+\dfrac{y}{2015-x}+\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

Ta có: \(\dfrac{x}{x+y}>\dfrac{x}{x+y+z}\)

\(\dfrac{y}{y+z}>\dfrac{y}{x+y+z}\)

\(\dfrac{z}{z+x}>\dfrac{z}{x+y+z}\)

Cộng vế với vế lại ta được:

\(A>\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1\)

\(\Rightarrow A>1\) (1)

Lại có: \(\dfrac{x}{x+y}< \dfrac{x+y}{x+y+z}\)

\(\dfrac{y}{y+z}< \dfrac{y+z}{x+y+z}\)

\(\dfrac{z}{z+x}< \dfrac{z+x}{x+y+z}\)

Cộng vế với vế lại ta được:

\(A< \dfrac{x+y}{x+y+z}+\dfrac{y+z}{x+y+z}+\dfrac{z+x}{x+y+z}=\dfrac{x+y+y+z+z+x}{x+y+z}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow A< 2\) (2)

Từ (1) và (2) => 1 < A < 2

Vậy A không phải số nguyên (dpcm)

26 tháng 3 2017

Mình làm được rồi

5 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x+y+2015}{z}=\frac{y+z-2016}{x}=\frac{z+x+1}{y}.\)

\(=\frac{x+y+2015+y+z-2016+z+x+1}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Do đó x+y+z=1 => x+y=1-z => \(\frac{2016-z}{z}=2\Rightarrow2016-z=2z\Leftrightarrow2016=3z\)

=> z= 672

Tương tự : x= -2015/3; y=2/3

13 tháng 4 2017

x=2015/3

y=2/3

15 tháng 8 2017

\(\dfrac{1-x}{2017}+\dfrac{2-x}{2016}=\dfrac{3-x}{2015}+\dfrac{4-x}{2014}\)

\(\left(\dfrac{1-x}{2017}+1\right)+\left(\dfrac{2-x}{2016}+1\right)=\left(\dfrac{3-x}{2015}+1\right)+\left(\dfrac{4-x}{2014}+1\right)\)

\(\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}=\dfrac{2018-x}{2015}+\dfrac{2018-x}{2014}\)

\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}-\dfrac{2018-x}{2015}-\dfrac{2018-x}{2014}=0\)

\(\Leftrightarrow\left(2018-x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)\ne0\)

\(\Leftrightarrow2018-x=0\Leftrightarrow x=2018\)

Vậy ...

15 tháng 8 2017

\(\dfrac{1-x}{2017}+\dfrac{2-x}{2016}=\dfrac{3-x}{2015}+\dfrac{4-x}{2014}\)

\(\Leftrightarrow\left(\dfrac{1-x}{2017}+1\right)+\left(\dfrac{2-x}{2016}+1\right)=\left(\dfrac{3-x}{2015}+1\right)+\left(\dfrac{4-x}{2014}+1\right)\)

\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}=\dfrac{2018-x}{2015}+\dfrac{2018-x}{2014}\)

\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}-\dfrac{2018-x}{2015}-\dfrac{2018-x}{2014}=0\)

\(\Leftrightarrow\left(2018-x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)

\(\Leftrightarrow2018-x=0\Leftrightarrow x=2018\)

Vậy ....

28 tháng 6 2017

bài 3:

a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)

A/D tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

28 tháng 6 2017

Theo mình thì bạn nên đăng từng câu hỏi chứ đăng 1 lượt thế này có 1 số bạn thấy dài quá ko mún làm và mình cũng ở trong số đó.vui

13 tháng 1 2019

cx này ít nhất là toán 7 nhé!

mk nghĩ đã:

Đương nhiên là: 

x,y E N nhé!!!

13 tháng 1 2019

\(x,y\in N\)

Hk tốt