K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

\(A=2019\times2021=\left(2021-1\right)\times\left(2021+1\right)=2021^2-1< 2021^2=B.\)

7 tháng 10 2019

sai mất rồi nhưng dù sao cũng cảm ơn bn nhé

24 tháng 3 2019

mk chỉ cần phần c thui nha!!!!!!!

24 tháng 3 2019

c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)

Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)

\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)

\(\Rightarrow M>N\) 

19 tháng 4 2018

không biết

4 tháng 4 2019

\(A=\frac{5^{60}+1}{5^{61}+1}\)

\(5A=\frac{5(5^{60}+1)}{5^{61}+1}=\frac{5^{61}+5}{5^{61}+1}=\frac{5^{61}+1+4}{5^{61}+1}=1+\frac{4}{5^{61}+1}\)                            \((1)\)

\(B=\frac{5^{61}+1}{5^{62}+1}\)

\(5B=\frac{5(5^{61})+1}{5^{62}+1}=\frac{5^{62}+5}{5^{62}+1}=\frac{5^{62}+1+4}{5^{62}+1}=1+\frac{4}{5^{62}+1}\)                          \((2)\)

Từ 1 và 2 \(\Rightarrow1+\frac{4}{5^{61}+1}>1+\frac{4}{5^{62}+1}\)

\(\Rightarrow5A>5B\)

Hay \(A>B\)

Vậy : ...

https://olm.vn/hoi-dap/question/102758.html

22 tháng 6 2021
Chi tết 2anh em chia tay nhau
14 tháng 5 2018

\(B=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}=\frac{2^{2019}+1}{2^{2020}+1}\)

vậy A=B=\(\frac{2^{2019}+1}{2^{2020}+1}\)

14 tháng 5 2018

\(B=\frac{2^{2020}+2}{2^{2021}+2}\)

\(=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}\)

\(=\frac{2^{2019}+1}{2^{2020}+1}=A\)

Vậy  \(A=B\)

P/s: Bài này mk thường thấy dạng như phía dưới, bn đọc tham khảo

\(B=\frac{2^{2020}+1}{2^{2021}+1}< \frac{2^{2020}+1+1}{2^{2021}+1+1}=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2^{2019}+1}{2^{2020}+1}=A\)

Vậy   \(A>B\)

Ta có:

\(A=\frac{4-7^{2020}}{7^{2020}}+\frac{5+7^{2021}}{7^{2021}}\) và \(B=\frac{1}{7^{2019}}\)

Ta xét 2 trường hợp:

\(TH1:\frac{4-7^{2020}}{7^{2020}}=\frac{-7^{2020}+4}{7^{2020}}=-1+\frac{4}{7^{2020}}\)

\(TH2:\frac{5+7^{2021}}{7^{2021}}=1+\frac{5}{7^{2021}}\)

\(\Rightarrow\left(-1+\frac{4}{7^{2020}}\right)+\left(1+\frac{5}{7^{2021}}\right)\)

\(\Rightarrow\frac{4}{7^{2020}}+\frac{5}{7^{2021}}\)

\(Do:\)

\(\frac{4}{7^{2020}}>\frac{1}{7^{2019}}\)

\(\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)

Nên:\(\frac{4}{7^{2020}}+\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)

\(\Rightarrow A>B\)

4 tháng 10 2018
  •  Về phần so sánh hai lũy thừa thi bạn phải làm thế nào cho nó cùng cơ số hoặc cùng số mũ. Sau đó áp dụng quy tắc

Với \(a>b\Rightarrow a^m>b^m\) và ngược lại với a < b (đối với cùng số mũ) hoặc Với \(m>n\Rightarrow a^m>a^n\) và ngược lại với m < n (đối với cùng cơ số)

  • Tiếp theo,về dạng: \(A=2+2^2+2^3+...+2^{900}\). Bạn có thấy tất cả cơ số đều là 2 đúng không? Vì chúng ta nhân tất cả cho 2. Được: \(2A=2^2+2^3+2^4+...+2^{901}\)

Sau đó lấy \(2A-A\) được: \(A=2^{901}-2\) (Do 2A - A = A)

Các dạng khác làm tương tự!