Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(2^{1050}=\left(2^2\right)^{525}=4^{525}< 5^{525}< 5^{540}\)
b/
\(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}>13^{40}\)
c/
\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}>2^{55}=\left(2^5\right)^{11}=32^{11}>31^{11}\)
Ta sử dụng tính chất bắt cầu :
Ta thấy : \(2^{161}>2^{160}\)
Mà \(2^{160}=\left(2^4\right)^{40}=16^{40}\)
Ta so sánh :
\(16^{40}>13^{40}\Rightarrow13^{40}< 2^{161}\)
1340 và 2161
Ta có :
2161 > 2160 = ( 24 )40 = 1640
Vì 1340 < 1640
Nên 1340 < 2161
a)Ta có:\(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125^{12}>121^{12}\)\(\Rightarrow5^{36}>11^{24}\)
a,5mũ 36=(5mũ3)mũ12=125 mũ12
11^24=(11^2)12=121^12
vì 121<125 nên 5^36>11^24
a) 5^23 và 6 . 5^22
Ta có: 5^23 = 5^22 . 5
Vì 5 < 6 nên 5^23 < 6 . 5^22
b) 7 . 2^13 và 2^16
Ta có: 2^16 = 2^13 . 2^3 = 2^13 . 8
Vì 7 < 8 nên 7 . 2^13 < 2^16
c) 21^15 và 27^5 . 49^8
Ta có: 21^15 = (3.7)^15 = 3^15 . 7^15
27^5 . 49^8 = (3^3)^5 . (7^2)^8 = 3^15 . 7^16
Vì 7^15 < 7^16 nên 21^15 < 27^5 . 49^8
So sánh 12 mũ 2 < 13 mũ 2.
12 mũ 2 < 13 mũ 2