Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{-1}{16}\right)^{100}\)và\(\left(\frac{-1}{2}\right)^{500}\)
Ta có: \(\left(\frac{-1}{16}\right)^{100}=[\left(\frac{-1}{2}\right)^4]^{100}=[\left(\frac{1}{2}\right)^4]^{100}=\left(\frac{1}{2}\right)^{400}\)
Mà: \(\left(\frac{-1}{2}\right)^{500}=\left(\frac{1}{2}\right)^{500}>\left(\frac{1}{2}\right)^{400}\)
Vậy \(\left(\frac{-1}{2}\right)^{500}>\left(\frac{-1}{16}\right)^{100}\)
So sánh \(\left(-\frac{1}{16}\right)^{100}\)và\(\left(-1\right)^{500}\)
\(\left(-\frac{1}{16}\right)^{100}\)
\(\left(-1\right)^{500}=\left(-\frac{16}{16}\right)^{500}\)
Vì \(\left(-\frac{1}{16}\right)
ta có : \(\left(-\frac{1}{2}\right)^{500}=\left[\left(-\frac{1}{2}\right)^5\right]^{100}=\left(-\frac{1}{32}\right)^{100}\)
=> \(\left(-\frac{1}{16}\right)^{100}< \left(-\frac{1}{32}\right)^{100}\)
<=> \(\left(-\frac{1}{16}\right)^{100}< \left(-\frac{1}{2}\right)^{500}\)
câu b cũng tương tự nha tất cả đưa về cơ số là -2
a) Chỉ cần so sánh \(\left(\frac{1}{16}\right)^{100}\)và \(\left(\frac{1}{2}\right)^{500}\)
Cách 1 : \(\left(\frac{1}{16}\right)^{100}\)= \(\left(\frac{1}{2}\right)^{400}>\left(\frac{1}{2}\right)^{500}\)
Cách 2 : \(\left(\frac{1}{16}\right)^{100}>\left(\frac{1}{32}\right)^{100}=\left(\frac{1}{2}\right)^{500}\)
b) Trước hết ta so sánh : 329 và 1813
Ta có : 329 < 245 < 252 = 1613 < 1813
Vậy -329 > -1813 tức là ( -32)9 > ( -18)13
\(\left(-32\right)^9=-\left(2^5\right)^9=-\left(2^{45}\right)\)
\(\left(-16\right)^{13}=-\left(2^4\right)^{13}=-\left(2^{52}\right)\)
vì -2^45>-2^52hay -16^13>-32^9
Bài này dễ mà bạn cũng hỏi =(((
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{400}-1\right)\)
\(\Leftrightarrow A=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}....\frac{-399}{400}\)
\(=\frac{1.\left(-3\right)}{2.2}.\frac{2.\left(-4\right)}{3.3}.\frac{3.\left(-5\right)}{4.4}....\frac{19.\left(-21\right)}{20.20}\)
\(=\frac{\left(1.2.3...19\right).\left(\left(-3\right).\left(-4\right).\left(-5\right)...\left(-21\right)\right)}{\left(2.3.4...20\right)\left(2.3.4...20\right)}=\frac{1}{20}.\frac{\left(-21\right)}{2}=\frac{-21}{40}\)
Dễ dàng nhận thấy \(\frac{21}{40}>\frac{1}{2}\Rightarrow\frac{-21}{40}< \frac{-1}{2}\)
Vậy \(A< -\frac{1}{2}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{400}-1\right)\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{399}{400}\)
\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{19.21}{20.20}\)
\(=\frac{\left(1.2.3...19\right)\left(3.4.5...21\right)}{\left(2.3.4....20\right)\left(2.3.4....20\right)}\)
\(=\frac{1.21}{20.2}=\frac{21}{40}\)
Dễ thấy \(\frac{21}{40}>\frac{-1}{2}\)
Vậy A > -1/2
Nhầm rồi :v, làm lại
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{400}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot\frac{-15}{16}\cdot\cdot\cdot\cdot\frac{-399}{400}\)
\(=\frac{1.\left(-3\right)}{2.2}\cdot\frac{2.\left(-4\right)}{3.3}\cdot\cdot\cdot\cdot\frac{19.\left(-21\right)}{20.20}\)
\(=\frac{\left(1.2....19\right).\left[-\left(3.4.5...21\right)\right]}{\left(2.3....20\right)\left(2.3....20\right)}\)
\(=\frac{1.\left(-21\right)}{20.2}=\frac{-21}{40}\)
Dễ thấy \(\frac{21}{40}>\frac{20}{40}\Rightarrow\frac{-21}{40}< \frac{-20}{40}=\frac{-1}{2}\)
Vậy A < -1/2
(-1/16)100 = (1/16)100
(-1/2)400 = (1/2)400 =[ (1/2)4 ]100= (1/16)100
---> (-1/16)100 =(-1/2)400