Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Rightarrow\left(x+y\right)\left(x+y\right)=xy\)
=>(x+y)2=xy
Vì \(\left(x+y\right)^2\ge0\) với mọi x,y \(\in\) R
xy < 0(do x;y trái dấu)
=>\(\left(x+y\right)^2\ne xy\)
=>ko có cặp (x;y) nào thỏa mãn đề bài
Ta có :1/(x+y)=1/x+1/y
=>1/(x+y)=(x+y)/xy
=>(x+y)(x+y)=xy
=>(x+y)2=xy
Vì (x+y)2 >= 0 với mọi x ,y(*)
Mà xy<0( do x,y trái dấu). Mâu thuẫn với (*)
=> không tồn tại (x;y) thoả mãn đề bài
vậy.........
giả sử tồn tại hai số hữu tỉ thỏa mãn đẳng thức :
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)
\(\Rightarrow xy=\left(x+y\right)\left(y+x\right)\)
\(\Rightarrow xy=\left(x+y\right)^2\)
Mà x và y là hai số trái dấu => ( x + y )2 > 0 còn xy < 0
Vậy ...
không tồn tại cặp số theo ycbt vì 1/x+y = 1/x +1/y = (x+y)/xy
=> (x+y)^2 = xy
không tìm đc vì 1 vế luôn dương, 1 vế x.y luôn âm do trái dấu => không có
không có kết quả đau trần sơn tùng ah