Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(sin\left(4x-10^0\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow sin\left(4x-10^0\right)=sin45^0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10^0=45^0+k360^0\\4x-10^0=135^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=55^0+k360^0\\4x=145^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=13,75^0+k90^0\\x=36,25^0+k90^0\end{matrix}\right.\) (\(k\in Z\))
2.
Đề không đúng
3.
ĐKXĐ: \(\left\{{}\begin{matrix}cos2x\ne0\\cosx\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(tan2x=tanx\)
\(\Rightarrow2x=x+k\pi\)
\(\Rightarrow x=k\pi\)
4.
\(cot\left(x+\dfrac{\pi}{5}\right)=-1\)
\(\Leftrightarrow x+\dfrac{\pi}{5}=-\dfrac{\pi}{4}+k\pi\)
\(\Leftrightarrow x=-\dfrac{9\pi}{20}+k\pi\) (\(k\in Z\))
\(sin\left(2x+\dfrac{\pi}{3}\right)+cos3x=0\)
\(\Leftrightarrow cos\left(\dfrac{\pi}{6}-2x\right)+cos3x=0\)
\(\Leftrightarrow2cos\left(\dfrac{\pi}{12}+\dfrac{x}{2}\right).cos\left(\dfrac{\pi}{12}-\dfrac{5x}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(\dfrac{\pi}{12}+\dfrac{x}{2}\right)=0\\cos\left(\dfrac{\pi}{12}-\dfrac{5x}{2}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{12}+\dfrac{x}{2}=\dfrac{\pi}{2}+k\pi\\\dfrac{\pi}{12}-\dfrac{5x}{2}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{6}+k2\pi\\x=-\dfrac{\pi}{6}+\dfrac{k2\pi}{5}\end{matrix}\right.\)
Ta có: \(sin\left(2x+\dfrac{\pi}{3}\right)=-cos3x=cos\left(\pi-3x\right)=sin\left(\dfrac{\pi}{2}-\left(\pi-3x\right)\right)=sin\left(3x-\dfrac{1}{2}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=3x-\dfrac{1}{2}+k2\pi\\2x+\dfrac{\pi}{3}=\pi-3x+\dfrac{1}{2}+k2\pi\end{matrix}\right.\) Bạn tự tìm x được.
\(cos3x=sin\left(x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow cos3x=cos\left(\dfrac{\pi}{4}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{4}-x+k2\pi\\3x=-\dfrac{\pi}{4}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{8}+k\pi\end{matrix}\right.\)
Pt\(\Rightarrow cos3x=cos[\dfrac{\pi}{2}-(x+\dfrac{\pi}{4})]\)
\(\Rightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{2}-(x+\dfrac{\pi}{4})+k2\pi\\3x=-\dfrac{\pi}{2}+\left(x+\dfrac{\pi}{4}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{4}+k2\pi\\2x=-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+k2\pi\\x=-\dfrac{\pi}{8}+k2\pi\end{matrix}\right.\)(k\(\in\)Z)
a) √2 cos(x - π/4)
= √2.(cosx.cos π/4 + sinx.sin π/4)
= √2.(√2/2.cosx + √2/2.sinx)
= √2.√2/2.cosx + √2.√2/2.sinx
= cosx + sinx (đpcm)
b) √2.sin(x - π/4)
= √2.(sinx.cos π/4 - sin π/4.cosx )
= √2.(√2/2.sinx - √2/2.cosx )
= √2.√2/2.sinx - √2.√2/2.cosx
= sinx – cosx (đpcm).
\(\Leftrightarrow cos3x=cos\left[\dfrac{\pi}{2}-\left(x-\dfrac{\pi}{4}\right)\right]\)
\(\Leftrightarrow cos3x=cos\left(\dfrac{3\pi}{4}-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=\dfrac{3\pi}{4}-x+k2\pi\\3x=x-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
Cảm ơn ạ