K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

\(cos3x=sin\left(x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow cos3x=cos\left(\dfrac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{4}-x+k2\pi\\3x=-\dfrac{\pi}{4}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{8}+k\pi\end{matrix}\right.\)

30 tháng 9 2021

Pt\(\Rightarrow cos3x=cos[\dfrac{\pi}{2}-(x+\dfrac{\pi}{4})]\)

   \(\Rightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{2}-(x+\dfrac{\pi}{4})+k2\pi\\3x=-\dfrac{\pi}{2}+\left(x+\dfrac{\pi}{4}\right)+k2\pi\end{matrix}\right.\)

   \(\Rightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{4}+k2\pi\\2x=-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+k2\pi\\x=-\dfrac{\pi}{8}+k2\pi\end{matrix}\right.\)(k\(\in\)Z)

5 tháng 9 2021

1, \(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+cosx-cos3x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{sinx+cosx+sin3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{2sin2x.cosx+cosx}{1+2sin2x}=\dfrac{3+cos2x}{5}\)

⇔ \(\dfrac{cosx\left(2sin2x+1\right)}{1+2sin2x}=\dfrac{2+2cos^2x}{5}\)

⇒ cosx = \(\dfrac{2+2cos^2x}{5}\)

⇔ 2cos2x - 5cosx + 2 = 0

⇔ \(\left[{}\begin{matrix}cosx=2\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

⇔ \(x=\pm\dfrac{\pi}{3}+k.2\pi\) , k là số nguyên

2, \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\left(1+cot2x.cotx\right)=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cos2x.cosx+sin2x.sinx}{sin2x.sinx}=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cosx}{sin2x.sinx}=0\)

⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2cosx}{2cosx.sin^4x}=0\)

⇒ \(48-\dfrac{1}{cos^4x}-\dfrac{1}{sin^4x}=0\). ĐKXĐ : sin2x ≠ 0 

⇔ \(\dfrac{1}{cos^4x}+\dfrac{1}{sin^4x}=48\)

⇒ sin4x + cos4x = 48.sin4x . cos4x

⇔ (sin2x + cos2x)2 - 2sin2x. cos2x = 3 . (2sinx.cosx)4

⇔ 1 - \(\dfrac{1}{2}\) . (2sinx . cosx)2 = 3(2sinx.cosx)4

⇔ 1 - \(\dfrac{1}{2}sin^22x\) = 3sin42x

⇔ \(sin^22x=\dfrac{1}{2}\) (thỏa mãn ĐKXĐ)

⇔ 1 - 2sin22x = 0

⇔ cos4x = 0

⇔ \(x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)

 

5 tháng 9 2021

3, \(sin^4x+cos^4x+sin\left(3x-\dfrac{\pi}{4}\right).cos\left(x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)

⇔ \(\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

⇔ \(1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{3}{2}=0\)

⇔ \(\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{1}{2}-\dfrac{1}{2}sin^22x=0\)

⇔ sin2x - sin22x - (1 + cos4x) = 0

⇔ sin2x - sin22x - 2cos22x = 0

⇔ sin2x - 2 (cos22x + sin22x) + sin22x = 0

⇔ sin22x + sin2x - 2 = 0

⇔ \(\left[{}\begin{matrix}sin2x=1\\sin2x=-2\end{matrix}\right.\)

⇔ sin2x = 1

⇔ \(2x=\dfrac{\pi}{2}+k.2\pi\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)

4, cos5x + cos2x + 2sin3x . sin2x = 0

⇔ cos5x + cos2x + cosx - cos5x = 0

⇔ cos2x + cosx = 0

⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)

⇔ \(cos\dfrac{3x}{2}=0\)

⇔ \(\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\)

⇔ x = \(\dfrac{\pi}{3}+k.\dfrac{2\pi}{3}\)

Do x ∈ [0 ; 2π] nên ta có \(0\le\dfrac{\pi}{3}+k\dfrac{2\pi}{3}\le2\pi\)

⇔ \(-\dfrac{1}{2}\le k\le\dfrac{5}{2}\). Do k là số nguyên nên k ∈ {0 ; 1 ; 2}

Vậy các nghiệm thỏa mãn là các phần tử của tập hợp 

\(S=\left\{\dfrac{\pi}{3};\pi;\dfrac{5\pi}{3}\right\}\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:ĐK: $\cos 3x>\frac{-1}{2}$

PT $\Rightarrow 4\sin ^2\frac{x}{2}-\sqrt{3}\cos 2x-1-2\cos ^2(x-\frac{3\pi}{4})=0$

$\Leftrightarrow 2(1-\cos x)-\sqrt{3}\cos 2x-2+[1-2\cos ^2(x-\frac{3\pi}{4})]=0$

$\Leftrightarrow -2\cos x-\sqrt{3}\cos 2x-cos (2x-\frac{3\pi}{2})=0$

$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\cos (2x-\frac{3\pi}{2})=0$

$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\sin 2x=0$

$\Leftrightarrow \cos x+\frac{\sqrt{3}}{2}\cos 2x+\frac{1}{2}\sin 2x=0$

$\Leftrightarrow \cos x-\cos (2x+\frac{5\pi}{6})=0

$\Leftrightarrow \cos x=\cos (2x+\frac{5\pi}{6})$

$\Rightarrow x+2k\pi =2x+\frac{5}{6}\pi$ hoặc $-x+2k\pi =2x+\frac{5}{6}\pi$

Vậy......

a: ĐKXĐ: sin 2x<>1

=>2x<>pi/2+k2pi

=>x<>pi/4+kpi

\(\dfrac{cos2x}{sin2x-1}=0\)

=>cos2x=0

=>2x=pi/2+kpi

=>x=pi/4+kpi/2

Kết hợp ĐKXĐ, ta được:

x=3/4pi+k2pi hoặc x=7/4pi+k2pi

b: cos(sinx)=1

=>sin x=kpi

=>sin x=0

=>x=kpi

c: \(2\cdot sin^2x-1+cos3x=0\)

=>cos3x+cos2x=0

=>cos3x=-cos2x=-sin(pi/2-2x)=sin(2x-pi/2)

=>cos3x=cos(pi/2-2x+pi/2)=cos(pi-2x)

=>3x=pi-2x+k2pi hoặc 3x=-pi+2x+k2pi

=>x=-pi+k2pi hoặc x=pi/5+k2pi/5

e: cos3x=-cos7x

=>cos3x=cos(pi-7x)

=>3x=pi-7x+k2pi hoặc 3x=-pi+7x+k2pi

=>x=pi/10+kpi/5 hoặc x=pi/4-kpi/2

NV
29 tháng 7 2021

a.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos2x+\dfrac{1}{16}\)

\(\Leftrightarrow1-\dfrac{3}{4}sin^22x=cos2x+\dfrac{1}{16}\)

\(\Leftrightarrow\dfrac{15}{16}-\dfrac{3}{4}\left(1-cos^22x\right)=cos2x\)

\(\Leftrightarrow\dfrac{3}{4}cos^22x-cos2x+\dfrac{3}{16}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{4-\sqrt{7}}{6}\\cos2x=\dfrac{4+\sqrt{7}}{6}>1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x=\pm\dfrac{1}{2}arccos\left(\dfrac{4-\sqrt{7}}{6}\right)+k\pi\)

NV
29 tháng 7 2021

b.

\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{5}{2}-2sinx\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^2x=\dfrac{5}{2}-2sinx\)

\(\Leftrightarrow\dfrac{1}{2}sin^2x-2sinx+\dfrac{3}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=3\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)

4 tháng 8 2021

Xem lại đề bài đi

 

 

4 tháng 8 2021

Đề sai nhiều chỗ vậy, lần sau ghi đúng đề đi.

\(cos3x+sin7x=2sin^2\left(\dfrac{\pi}{4}-\dfrac{5x}{2}\right)+2cos^2\dfrac{9x}{2}\)

\(\Leftrightarrow cos3x+sin7x=cos\left(\dfrac{\pi}{2}-5x\right)+1-2cos^2\dfrac{9x}{2}\)

\(\Leftrightarrow cos3x+sin7x=sin5x-cos9x\)

\(\Leftrightarrow2cos6x.cos3x+2cos6x.sinx=0\)

\(\Leftrightarrow2cos6x.\left(cos3x+sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos3x+sinx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos3x+cos\left(\dfrac{\pi}{2}-x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\2cos\left(\dfrac{\pi}{4}+x\right).cos\left(2x-\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos\left(\dfrac{\pi}{4}+x\right)=0\\cos\left(2x-\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=\dfrac{\pi}{2}+k\pi\\\dfrac{\pi}{4}+x=\dfrac{\pi}{2}+k\pi\\2x-\dfrac{\pi}{4}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+\dfrac{k\pi}{6}\\x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{3\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)