K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

Cho \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

B2 = \(4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}+4-\sqrt{10+2\sqrt{5}}\)

\(8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)

\(8+2\sqrt{6-2\sqrt{5}}\)

\(8+2\sqrt{5-2\sqrt{5}+1}\)

\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(8+2.\left(\sqrt{5}-1\right)\) (do \(\sqrt{5}>1\))

\(6+2\sqrt{5}\)

\(5+2\sqrt{5}+1\)

\(\left(\sqrt{5}+1\right)^2\)

=> B = \(\sqrt{5}+1\)

 

30 tháng 6 2021

Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Rightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}\right)^2+\left(\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2+2\sqrt{4+\sqrt{10+2\sqrt{5}}}\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)

\(=8+2\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.1+1^2}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(8+2\left|\sqrt{5}-1\right|=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.1+1^2\)

\(=\left(\sqrt{5}+1\right)^2\Rightarrow A=\sqrt{5}+1\left(A>0\right)\)

25 tháng 10 2021

Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\\ A^2=8+2\sqrt{16-10-2\sqrt{5}}=8+2\sqrt{6-2\sqrt{5}}\\ A^2=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\\ A=\sqrt{5}+1\)

8 tháng 8 2021

Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(\Leftrightarrow A^2=8+2\sqrt{16-10-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\sqrt{6-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\left(\sqrt{5}-1\right)\\ \Leftrightarrow A^2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\\ \Leftrightarrow A=\sqrt{5}+1\)

Vậy \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=\sqrt{5}+1\)

2 tháng 8 2019

đề hơi sai

28 tháng 5 2019

#)Giải :

Bình phương hai vế, ta được : 

\(B^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

     \(=8+2\sqrt{\left(16-\sqrt{10+2\sqrt{5}}\right)}\)

     \(=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\left(\sqrt{5}-1\right)\)

Do \(B>0\)nên \(B=\sqrt{8+2\left(\sqrt{5}-1\right)}=\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)

           #~Will~be~Pens~#

Bình phương hai vế, ta được:
B2=8+2√(4+√10+2√5)(4−√10+2√5)=8+2√(16−(10+2√5))B2=8+2(4+10+25)(4−10+25)=8+2(16−(10+25))
B2=8+2√6−2√5=8+2√(√5−1)2=8+2(√5−1)B2=8+26−25=8+2(5−1)2=8+2(5−1)
Do B>0B>0 nên B=√8+2(√5−1)=√6+2√5=√5+1B=8+2(5−1)=6+25=5+1

Tk mk nha 

~ Hok tốt ~

Thanks m.n đã tk mk

23 tháng 5 2018

Đặt biểu thức trên là \(A\)

Ta có \(A^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)

\(=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)

\(\Rightarrow A=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)

29 tháng 5 2018

cho hỏi sao ra được kết quả như vậy giải thích dùm đi

8 tháng 9 2016

Đặt cái đấy là A

A= 8 + \(2\sqrt{6-2\sqrt{5}}\)

= 8 + \(2\sqrt{5}-2\)

= 6 + 2\(\sqrt{5}\)= (\(1+\sqrt{5}\))2

=> A = \(1+\sqrt{5}\)

21 tháng 9 2016

đặt A=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(A^2=8+2\sqrt{16-10-2\sqrt{5}}\)

\(A^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(A^2=8+2\sqrt{5}-2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)

vậy A=\(\sqrt{5}+1\)