Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ vế trái ta có
\(\frac{x.x\left(x+3\right)}{x.\left(x+3\right)\left(x+3\right)}\)
Rút gọn đi x và (x+3) còn
\(\frac{x}{x+3}\)
từ đó suy ra cái bên trên đó .
Xét VT, ta có: \(\frac{x^2\left(x+3\right)}{x\left(x+3\right)^2}=\frac{x}{x+3}\)= VP
Vậy ...
c) hang dang thuc ( x -y+z)^2
o duoi phan h hang dang thuc luon
a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)
mau la (x-1)(2x^2 -x-3)
b ) k nhin dc de
AD phân tích đa thức thành nhân tử ở tử thức và mẫu thức của từng phân thức
a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)
b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)
c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)
d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2
= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)
e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)
f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)
g) chắc là 3xyz
= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)
h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)
i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy
k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).
\(\frac{x^8-1}{\left(x^4+1\right)\left(x^2-1\right)}\)
\(=\frac{\left(x^2-1\right)\left(x^4+x^2+1\right)}{\left(x^4+1\right)\left(x^2-1\right)}\)
\(=\frac{x^4+x^2+1}{x^4+1}\)
\(\frac{x^2+y^2-4+2xy}{x^2-y^2+4+4x}\)
\(=\frac{\left(x+y\right)^2-2^2}{\left(x+2\right)^2-y^2}\)
\(=\frac{\left(x+y-2\right)\left(x+y+2\right)}{\left(x+2-y\right)\left(x+2+y\right)}\)
\(=\frac{x+y-2}{x+2-y}\)
\(\frac{4x^2+12x+9}{2x^2-x-6}\)
\(=\frac{\left(2x+3\right)^2}{2x^2-4x+3x-6}\)
\(=\frac{\left(2x+3\right)^2}{2x\left(x-2\right)+3\left(x-2\right)}\)
\(=\frac{\left(2x+3\right)^2}{\left(2x+3\right)\left(x-2\right)}\)
\(=\frac{2x+3}{x-2}\)
\(\frac{25-10x+x^2}{xy-5y}\)
\(=\frac{\left(5-x\right)^2}{-y\left(5-x\right)}\)
\(=-\frac{5-x}{y}\)
\(\frac{\left|x\right|-3}{x^2-9}\)
\(=\frac{x-3}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{1}{x+3}\)
\(\frac{3\left|x-4\right|}{3x^2-3x-36}\)
\(=\frac{3\left(x-4\right)}{3\left(x^2-x-12\right)}\)
\(=\frac{x-4}{x^2-4x+3x-12}\)
\(=\frac{x-4}{x\left(x-4\right)+3\left(x-4\right)}\)
\(=\frac{x-4}{\left(x-4\right)\left(x+3\right)}\)
\(=\frac{1}{x+3}\)
mình mới học lớp 7 thui à
Nếu lớp 8 thì sẽ giúp bạn liền
Mình thử nha :33
ĐKXĐ : \(x\ne-3,x\ne-26,x\ne-6,x\ne1\)
Ta có :
\(A=\left[\frac{3}{2}-\left(\frac{x^4\left(x^2+1\right)-x^4-1}{x^2+1}\right)\cdot\frac{x^3-4x^2+\left(x-4\right)}{x^6\left(x+6\right)-\left(x+6\right)}\right]:\frac{\left(x+3\right)\left(x+26\right)}{3\left(x-2\right)\left(x+6\right)}\)
\(=\left[\frac{3}{2}-\left(\frac{x^6-1}{x^2+1}\right)\cdot\frac{\left(x-4\right)\left(x^2+1\right)}{\left(x+6\right)\left(x^6-1\right)}\right]\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)
\(=\left[\frac{3}{2}-\frac{x-4}{x+6}\right]\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)
\(=\frac{x+26}{2\left(x+6\right)}\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)
\(=\frac{3\left(x-2\right)}{2\left(x+3\right)}\)
Vậy : \(A=\frac{3\left(x-2\right)}{2\left(x+3\right)}\left(x\ne-3,x\ne-26,x\ne-6,x\ne1\right)\)
a)= \(\frac{\left(2x+3\right)^2}{2x^2+3x-4x-6}\)
=\(\frac{\left(2x+3\right)^2}{x\left(2x+3\right)-2\left(2x+3\right)}\)
= \(\frac{\left(2x+3\right)^2}{\left(x-2\right)\left(2x+3\right)}\)
=\(\frac{2x+3}{x-2}\)
b) = \(\frac{3\left|x-4\right|}{3x^2-3x-1296}\)
= \(\frac{3\left|x-4\right|}{3\left(x^2-x-432\right)}\)
=\(\frac{\left|x-4\right|}{x^2-x-432}\)