Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)sin a-sin a.cos^2 a=sin a(1-cos^2 a)=sin a(sin^2 a)=sin^3 a
b)sin^4a+cos^4a+2sin^2acos^2a=(sin^2a+cos^2a)^2=1^2=1
~ ~ ~ Áp dụng đẳng thức \(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\) ~ ~ ~
a)
\(\left(\sin\alpha+\cos\alpha\right)^2-2\sin\alpha\cos\alpha-1\)
\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\right)\)
\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)^2\)
= 0
b)
\(\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+1\)
\(=\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\)
\(=\left(\sin\alpha-\cos\alpha\right)^2+\left(\sin\alpha+\cos\alpha\right)^2\)
\(=2\left(\sin^2\alpha+\cos^2\alpha\right)\)
= 2
c)
\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2+2\)
\(=2\left(\sin^2\alpha+\cos^2\alpha\right)+2\)
= 4
d)
\(\sin^2\alpha\cot^2\alpha+\cos^2\alpha\tan^2\alpha\)
\(=\left(\sin\times\dfrac{\cos}{\sin}\right)^2+\left(\cos\times\dfrac{\sin}{\cos}\right)^2\)
= 1
a, \(\tan^2\alpha\left(2\cos^2\alpha+\sin^2\alpha-1\right)\)
\(=\tan^2\alpha\left(\cos^2\alpha+\cos^2\alpha+\sin^2\alpha-1\right)\)
\(=\tan^2\alpha\left(\cos^2\alpha+1-1\right)\)
\(=\tan^2\alpha.\cos^2\alpha=1\)
b, \(\sin\alpha-\sin\alpha.\cos^2\alpha\)
\(=\sin\alpha\left(1-\cos^2\alpha\right)\)
\(=\sin\alpha.\sin^2\alpha\)
bn ơi lm j có công thức \(\tan^2a\times\cos^2a=1\) đâu
a) 1 + tan22 a =1 +(\(\dfrac{sina}{cosa}\))2 =\(\dfrac{sina+cosa}{cos^2a}\)=\(\dfrac{1}{cos^2a}\)
b) 1 + cot2 a= 1 +(\(\dfrac{cosa}{sina}\))2 = \(\dfrac{cosa+sina}{sin^2a}\)=\(\dfrac{1}{sin^2a}\)
c) tan2 a (2 sin2a + 3 cos2 a - 2)
=tan2 a[cos2 a +2 (\(sina^2+cos^2a\))-2 ]
=\(\dfrac{sin^2a}{cos^2a}\)×\(cos^2a=sin^2a\)
b: \(1+cot^2a=1+\left(\dfrac{cosa}{sina}\right)^2=\dfrac{1}{sin^2a}\)
c: \(=tan^2a\left[2\left(1-cos^2a\right)+3cos^2a-2\right]\)
\(=tan^2a\left[cos^2a\right]\)
\(=\dfrac{sin^2a}{cos^2a}\cdot cos^2a=sin^2a\)
=\(\frac{sin^2a-2sina.cosa+cos^2a}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}=\frac{tana-1}{tana+1}\)
3. Cho tam giác ABC vuông tại A . Vẽ hình và thiết lập các hệ thúc tính TSLG của góc B từ đó suy ra các hệ thức tính TSLG góc C
Bài 2:
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a\cdot cos^2a\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)
\(=1-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)
=1
a) \(\tan^2\alpha+1=\frac{\sin^2\alpha}{\cos^2\alpha}+1=\frac{\sin^2\alpha+\cos^2\alpha}{\cos^2\alpha}=\frac{1}{\cos^2\alpha}\)
b) \(\cot^2\alpha+1=\frac{\cos^2\alpha}{\sin^2\alpha}+1=\frac{\cos^2\alpha+\sin^2\alpha}{\sin^2\alpha}=\frac{1}{\sin^2\alpha}\)
c) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)
\(=2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2-1\)
a. \(\dfrac{1+2sin\alpha cos\alpha}{cos^2\alpha-sin^2\alpha}=\dfrac{sin^2\alpha+2sin\alpha cos\alpha+cos^2}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}=\dfrac{\left(sin\alpha+cos\alpha\right)^2}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}=\dfrac{sin\alpha+cos\alpha}{cos\alpha-sin\alpha}\)
b. C = \(sin^4a+sin^2a.cos^2a+cos^2a=\left(1-cos^2\right)^2+\left(1-cos^2a\right)cos^2a+cos^2a=1-2cos^2+cos^4a+cos^2a-cos^4a+cos^2a=1\)