K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

ừ bài nâng cao mà bạn ơi :)))

4 tháng 10 2021

\(P=\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{3}\right)^4+...+\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\)

\(=\left(\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2\right)+\left(\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{4}\right)^4\right)+...+\left(\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\right)\)

\(=\dfrac{1}{3}.\dfrac{2}{3}+\left(\dfrac{1}{3}\right)^3.\dfrac{2}{3}+...+\left(\dfrac{1}{3}\right)^{19}.\dfrac{2}{3}\)

\(=\dfrac{2}{3}.\left[\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^3+...+\left(\dfrac{1}{3}\right)^{19}\right]\)

27 tháng 9 2021

\(E=\dfrac{98:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right)\cdot\dfrac{7}{4}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}\\ E=\dfrac{98}{\dfrac{3}{5}}+\dfrac{\dfrac{7}{4}}{\dfrac{119}{36}\cdot\dfrac{36}{17}}\\ E=\dfrac{490}{3}+\dfrac{\dfrac{7}{4}}{7}=\dfrac{490}{3}+\dfrac{1}{4}=\dfrac{1963}{12}\)

27 tháng 9 2021

bạn ơi chỗ kia mik nhìn hơi loạn tí bạn giải thích giúp mik với

 

NV
4 tháng 10 2021

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

\(3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3B-B=1-\dfrac{1}{3^{100}}\)

\(\Rightarrow2B=1-\dfrac{1}{3^{100}}\)

\(0< \dfrac{1}{3^{100}}< 1\Rightarrow0< 1-\dfrac{1}{3^{100}}< 1\)

\(\Rightarrow0< 2B< 1\Rightarrow0< B< \dfrac{1}{2}\Rightarrow\) B không phải số nguyên

26 tháng 8 2023

\(\left(1-\dfrac{1}{1+2}\right)\cdot\left(1-\dfrac{1}{1+2+3}\right)\cdot\left(\dfrac{1}{1+2+3+...+2006}\right)\)

\(=\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{6}\right)\cdot\left\{\dfrac{1}{\left(2006+1\right)\left[\left(2006-1\right):1+1\right]}\right\}\)

\(=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot\dfrac{1}{2007\cdot2006}\)

\(=\dfrac{10}{18}\cdot\dfrac{1}{4026042}\)

\(=\dfrac{5}{9}\cdot\dfrac{1}{4026042}\)

\(=\dfrac{5}{36234378}\)

30 tháng 6 2017

a) \(\left(1\dfrac{1}{2}\right)\left(1\dfrac{1}{3}\right)..............\left(1\dfrac{1}{100}\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}....................\dfrac{101}{100}\)

\(=\dfrac{1}{2}.\dfrac{101}{1}=\dfrac{101}{2}\)

b) \(1\dfrac{1}{2}.1\dfrac{1}{3}.1\dfrac{1}{4}...................1\dfrac{1}{2007}\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....................\dfrac{2008}{2007}\)

\(=\dfrac{1}{2}.\dfrac{2008}{1}=1004\)

c) \(1\dfrac{1}{2}.1\dfrac{1}{3}.....................1\dfrac{1}{2017}\)

\(=\dfrac{3}{2}.\dfrac{4}{3}..................\dfrac{2018}{2017}\)

\(=\dfrac{1}{2}.\dfrac{2018}{1}=1009\)

4 tháng 10 2021

\(N=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{100}\)

\(\Rightarrow2N=2+1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow N=2N-N=2+1+\dfrac{1}{2}+...+\left(\dfrac{1}{2}\right)^{99}-1-\dfrac{1}{2}-...-\left(\dfrac{1}{2}\right)^{100}=2-\left(\dfrac{1}{2}\right)^{100}\)

4 tháng 10 2021

\(N=1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\)

\(\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\)

\(\dfrac{1}{2}N-N=\left(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\right)\)

               \(-\left(1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\right)\)

\(-\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}-1\)

\(N=\dfrac{-\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}}{-\dfrac{1}{2}}\)

7 tháng 9 2023

a) \(5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^{6-5}+1=5+1=6\)

b) \(\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6\)

\(=\left(\dfrac{3}{7}\right)^{21-6}=\left(\dfrac{3}{7}\right)^{15}\)

c) \(\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)

\(=\dfrac{8}{27}-1+\dfrac{4}{9}\)

\(=\dfrac{8-27+12}{27}=-\dfrac{7}{27}\)

7 tháng 9 2023

\(a)5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^1+1=6\)

\(b,\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{49-40}{49}\right)^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3=\left(\dfrac{3}{7}\right)^{21}:[\left(\dfrac{3}{7}\right)^2]^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6=\left(\dfrac{3}{7}\right)^{21-6}\)

\(=\left(\dfrac{3}{7}\right)^{15}\)

\(c,3.\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)

\(=3.\dfrac{8}{27}-1+\dfrac{4}{9}\)

\(=\dfrac{8}{9}-1+\dfrac{4}{9}\)

\(=\dfrac{8-9+4}{9}=\dfrac{1}{3}\)

23 tháng 9 2021

\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{19}\right)\left(1-\dfrac{1}{20}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{18}{19}.\dfrac{19}{20}=\dfrac{1}{20}>\dfrac{1}{21}\)

8 tháng 8 2023

\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}-\dfrac{3}{2}+1=\)

\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1=-\dfrac{3}{2}\)

8 tháng 8 2023

= 4 . -1/8 - 2 . -1/4 + 3 . -1/2 + 1

= -1/2 - -1/2 + -3/2 + 1

= -1/2

8 tháng 10 2021

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\\\dfrac{a}{c}=\dfrac{b}{d}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(\dfrac{a}{c}\right)^2=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\left(\dfrac{a}{c}\right)^2=\dfrac{ab}{cd}\end{matrix}\right.\)

\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)