Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
=> 2A - A = 1 - \(\frac{1}{2^{100}}\)
<=> A = 1 - \(\frac{1}{2^{100}}\)
\(A=\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}.\)
\(\Rightarrow2A=1+\frac{1}{2^1}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)
\(A=1-\frac{1}{2^{100}}\)
Tờ làm luôn, ko ghi đề nữa nhé
\(A=\frac{\frac{24}{12}-\frac{4}{12}+\frac{3}{12}}{\frac{24}{12}+\frac{2}{12}-\frac{3}{12}}\)
\(A=\frac{\frac{23}{12}}{\frac{23}{12}}=1\)
Vậy A=1
\(A=\frac{2-\frac{1}{3}+\frac{1}{4}}{2+\frac{1}{6}-\frac{1}{4}}\)\(=\frac{2-\frac{2}{6}+\frac{2}{8}}{2+\frac{2}{12}-\frac{2}{8}}\)\(=\frac{2\left(1-\frac{1}{6}+\frac{1}{8}\right)}{-2\left(1-\frac{1}{12}+\frac{1}{8}\right)}\)\(=-1\)
A=(ghi lại biieur thức)
2A=2+1+1/2+1/2^2+….+1/2^2011
2A-A=A=(2+1+1/2+1/2^2+….+1/2^2011)-(1+1/2+1/2^2+...+1/2^2012)
A=2-1/2^2012
1/2 A= 1/2+1/2^2+1/2^3+1/2^4+...........+1/2^2013
=>A-1/2A= 1 -1/2^2013
=>1/2A=1 -1/2^2013
=>A=(1 - 1/2^2013) : 1/2
2A = 2 + 1 + 1/2 + 1/22 + 1/23 + ... + 1/22011
mà A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/22012
2A - A = 2 - 1/22012
A = 2 - 1/22012
Ta có A=1+1/2+1/2^2+1/2^3+........+1/2^2012
=>2A=2+1+1/2+1/2^2+.......+1/2^2011
=>2A-A=(2+1+1/2+1/2^2+.....+1/2^2011)-(1+1/2+1+1/2^2+1/2^3+.....+1/2^2012)
=>A=\(2-\frac{1}{2^{2012}}\)
\(A=\frac{2^{2013-1}}{2^{2012}}\)
A=đã cho.
1/2*A=1/2+1/2^2+1/2^3+...+1/2^2012+1/2^2013.
A-1/2*A=1-1/2^2013(khử).
1/2*A=1-1/2^2013.
A=2*(1-1/2^2013).
A=2-2/2^2013.
A=2-1/2^2012.