K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

\(A=\dfrac{u-v}{\sqrt{u}+\sqrt{v}}-\dfrac{\sqrt{u^3}+\sqrt{v^3}}{u-v}\)

\(=\sqrt{u}-\sqrt{v}-\dfrac{u\sqrt{u}+v\sqrt{v}}{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}\)

\(=\sqrt{u}-\sqrt{v}-\dfrac{u-\sqrt{uv}+v}{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}\)

\(=\sqrt{u}-\sqrt{v}-\dfrac{u-\sqrt{uv}+v}{\sqrt{u}-\sqrt{v}}\)

\(=\dfrac{\left(\sqrt{u}-\sqrt{v}\right)\sqrt{u}-\left(\sqrt{u}-\sqrt[]{v}\right)\sqrt{v}-\left(u-\sqrt{uv}+v\right)}{\sqrt{u}-\sqrt{v}}\)

\(=\dfrac{u-\sqrt{uv}-\sqrt{uv}+v-u+\sqrt{uv}-v}{\sqrt{u}-\sqrt{v}}\)

\(\Leftrightarrow\)\(-\dfrac{\sqrt{uv}}{\sqrt{u}-\sqrt{v}}\)

16 tháng 8 2018

mình chưa hiểu bài giải này ạ

16 tháng 8 2018

\(B=\dfrac{2u+\sqrt{uv}-3v}{2u-5\sqrt{uv}+3v}\)

\(=\dfrac{2u+3\sqrt{uv}-2\sqrt{uv}-3v}{2u-2\sqrt{uv}-3\sqrt{uv}+3v}\)

\(=\dfrac{\sqrt{u}.\left(2\sqrt{u}+3\sqrt{v}\right)-\sqrt{v}.\left(2\sqrt{u}+3\sqrt{v}\right)}{2\sqrt{u}.\left(\sqrt{u}-\sqrt{v}\right)-3\sqrt{v}.\left(\sqrt{u}-\sqrt{v}\right)}\)

\(=\dfrac{\left(2\sqrt{u}+3\sqrt{v}\right)\left(\sqrt{u}-\sqrt{v}\right)}{\left(\sqrt{u}-\sqrt{v}\right)\left(2\sqrt{u}-3\sqrt{v}\right)}\)

\(=\dfrac{2\sqrt{u}+3\sqrt{v}}{2\sqrt{u}-3\sqrt{v}}\\ =\dfrac{4u+12\sqrt{uv}+9v}{4u-9v}\)

6 tháng 8 2020

A=\(\frac{u-v}{\sqrt{u}+\sqrt{v}}-\frac{\sqrt{u^3}+\sqrt{v^3}}{u-v}=\frac{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}{\sqrt{u}+\sqrt{v}}-\frac{\left(\sqrt{u}+\sqrt{v}\right)\left(u-\sqrt{u}\sqrt{v}+v\right)}{\left(\sqrt{u}+\sqrt{v}\right)\left(\sqrt{u}-\sqrt{v}\right)}\)

\(=\sqrt{u}-\sqrt{v}-\frac{u-\sqrt{uv}+v}{\sqrt{u}-\sqrt{v}}=\frac{u-2\sqrt{uv}+v-u+\sqrt{uv}-v}{\sqrt{u}-\sqrt{v}}=\frac{-\sqrt{uv}}{\sqrt{u}-\sqrt{v}}\)

6 tháng 8 2020

bạn vào thống kê của mình có link tham khảo 

Câu hỏi của Duy Saker Hy - Toán lớp 9 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

Biến đổi tương đương:

\(\sqrt{\frac{a+b}{2}}\geq \frac{\sqrt{a}+\sqrt{b}}{2}\)

\(\Leftrightarrow \frac{a+b}{2}\geq \frac{(\sqrt{a}+\sqrt{b})^2}{4}=\frac{a+b+2\sqrt{ab}}{4}\)

\(\Leftrightarrow \frac{a+b}{2}-\frac{a+b+2\sqrt{ab}}{4}\geq 0\)

\(\Leftrightarrow \frac{a+b-2\sqrt{ab}}{4}\geq 0\)

\(\Leftrightarrow \frac{(\sqrt{a}-\sqrt{b})^2}{4}\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b$

4 tháng 7 2017

a. \(\dfrac{x^2-3}{x+\sqrt{3}}=\dfrac{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}{x+\sqrt{3}}=x-\sqrt{3}\)

12 tháng 7 2021

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

\(A< \dfrac{3}{5}\Rightarrow\dfrac{3}{5}-A>0\Rightarrow\dfrac{3}{5}-\dfrac{\sqrt{x}-3}{\sqrt{x}-1}>0\)

\(\Rightarrow\dfrac{3\left(\sqrt{x}-1\right)-5\left(\sqrt{x}-3\right)}{5\left(\sqrt{x}-1\right)}>0\Rightarrow\dfrac{12-2\sqrt{x}}{5\left(\sqrt{x}-1\right)}>0\)

\(\Rightarrow\dfrac{2}{5}.\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\Rightarrow\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-\sqrt{x}>0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}6-\sqrt{x}< 0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1< x< 36\\\left\{{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\left(l\right)\end{matrix}\right.\) 

\(\Rightarrow1< x< 36\)

 

12 tháng 7 2021

\(=>A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

để \(A< \dfrac{3}{5}< =>\dfrac{\sqrt{x}-3}{\sqrt{x}-1}< \dfrac{3}{5}\)

\(< =>\dfrac{5\left(\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{5\left(\sqrt{x}-1\right)}< 0\)

\(< =>\dfrac{2\sqrt{x}-12}{5\left(\sqrt{x}-1\right)}< 0\)

\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}2\sqrt{x}-12>0\\5\left(\sqrt{x}-1\right)< 0\end{matrix}\right.\\\left[{}\begin{matrix}2\sqrt{x}-12< 0\\5\left(\sqrt{x}-1\right)>0\end{matrix}\right.\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\\\left[{}\begin{matrix}x< 36\\x>1\end{matrix}\right.\end{matrix}\right.=>1< x< 36\left(tm\right)\)

AH
Akai Haruma
Giáo viên
11 tháng 4 2023

Lời giải:

$A=\frac{10\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+4)}-\frac{(2\sqrt{x}-3)(\sqrt{x}-1)}{(\sqrt{x}+4)(\sqrt{x}-1)}-\frac{(\sqrt{x}+1)(\sqrt{x}+4)}{(\sqrt{x}-1)(\sqrt{x}+4)}$

$=\frac{10\sqrt{x}-(2\sqrt{x}-3)(\sqrt{x}-1)-(\sqrt{x}+1)(\sqrt{x}+4)}{(\sqrt{x}+4)(\sqrt{x}-1)}$

$=\frac{-3x+10\sqrt{x}-7}{(\sqrt{x}+4)(\sqrt{x}-1)}$

$=\frac{-(\sqrt{x}-1)(3\sqrt{x}-7)}{(\sqrt{x}+4)(\sqrt{x}-1)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}$

\(P=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{x-9}:\dfrac{1}{\sqrt{x}-3}\)

    \(=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\sqrt{x}-3\right)=\dfrac{6}{\sqrt{x}+3}\)

26 tháng 6 2021

\(P=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\sqrt{x}-3\)

\(P=\dfrac{6}{\sqrt{x}+3}\)

16 tháng 5 2021

`A=(2\sqrtx-9)(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)(3-sqrtx)(x>=0,x ne 4, x ne 9)`

`=(2\sqrtx-9)(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)(sqrtx-3)`

`=(2sqrtx-9-x+9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(x-sqrtx-2)/(x-5sqrtx+6)`
`=((\sqrtx+1)(sqrtx-2))/((sqrtx-2)(sqrtx-3))`
`=(sqrtx+1)/(sqrtx-3)`

16 tháng 5 2021

`A=(2\sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4, x ne 9)`

`=(2\sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`

`=(2sqrtx-9-x+9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(x-sqrtx-2)/(x-5sqrtx+6)`
`=((\sqrtx+1)(sqrtx-2))/((sqrtx-2)(sqrtx-3))`
`=(sqrtx+1)/(sqrtx-3)`