Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-\sqrt{2}-\sqrt{1}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+....-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}\)
\(A=\sqrt{9}-\sqrt{1}=3-1=2\)
với n >0, ta có :
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Gọi biểu thức đã cho là A
\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)
\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)
\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)
\(A=-\sqrt{1}+\sqrt{9}=2\)
14dm5cm=14,5dm;3dm7cm=3,7dm
chu vi hình chữ nhật đó là:
(14,5+3,7)x2=36,4(dm)
ĐS:36,4dm
14 dm 5 cm = 14,5 dm
3 dm 7 cm = 3,7 dm
Chiều rộng HCN là :
14,5 - 3,7 = 10,8 ( dm )
chu vi HCN là :
( 14,5 + 10,8 ) x 2 = 50,6 ( dm )
ĐS:..
`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`
`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`
`=root{3}{4(1-sqrt3)(1+sqrt3)}`
`=root{3}{4(1-3)}=-2`
`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`
`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`
`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`
`=root{3}{9}`
`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`
`=root{3}{(8sqrt5-16)(8sqrt5+16)}`
`=root{3}{320-256}`
`=root{3}{64}=4`
`b)root{3}{7-5sqrt2}-root{6}{8}`
`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`
`=root{3}{(1-sqrt2)^3}-sqrt2`
`=1-sqrt2-sqrt2=1-2sqrt2`
Phân tích mỗi hạng tử theo kiểu như dưới đây
\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}\right)^2-\left(\sqrt{2}\right)^2}\)
\(\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2}\)
Khi đó mọi mẫu đều bằng -1
Bạn tiếp tục làm và kết quả nhận được là \(1-\sqrt{9}\)
\(a)\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)
\(=\frac{7+2\sqrt{35}+5+7-2\sqrt{35}+5}{7-5}\)
\(=\frac{24}{2}\)
\(=12\)
\(b)\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)+\left(2+\sqrt{8}-\sqrt{6}\right)}{2+\sqrt{2}-\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)+\sqrt{2}\left(\sqrt{2}+2-\sqrt{3}\right)}{2+\sqrt{2}-\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}\right)}{2+\sqrt{2}-\sqrt{3}}\)
\(=1+\sqrt{2}\)
\(c)A=\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{70-14\sqrt{3}-30\sqrt{3}+18}{25-3}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{88-44\sqrt{3}}{22}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{44\left(2-\sqrt{3}\right)}{22}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{2\left(2-\sqrt{3}\right)}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)
\(A=3-1=2\)
P/s: nếu đề là vậy thì t ra kết quả như vậy ạ, nhưng lần sau khi đăng câu hỏi bạn nên viết rõ hơn ra nhé
(1+1+1)! = 3! = 6
2+2+2=6
3x3-3=6
\(\sqrt{4}+\sqrt{4}+\sqrt{4}=6\)
5:5+5=6
6+(6-6)=6
7-7:7=6
\(8-\sqrt{\sqrt{8+8}}=6\)
\(\sqrt{9}.\sqrt{9}-\sqrt{9}=6\)