Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{5}{{2 - x}} = \frac{{ - 5}}{{x - 2}}\)
\({x^2} - 4{\rm{x}} + 4 = {\left( {x - 2} \right)^2}\)
\(MTC = \left( {x + 2} \right){\left( {x - 2} \right)^2}\)
Nhân tử phụ của x+2 là \({\left( {x - 2} \right)^2}\)
Nhân tử phụ của\({x^2} - 4{\rm{x}} + 4\) là \({\left( {x - 2} \right)^2}\)
Nhân tử phụ của x - 2 là (x+2)(x−2)
Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:
\(\begin{array}{l}\frac{1}{{x + 2}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{{x + 1}}{{{x^2} - 4{\rm{x - 4}}}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{5}{{2 - x}} = \frac{{ - 5\left( {x + 2} \right)\left( {x - 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\end{array}\)
b) Ta có: 3x+3y=3(x+y)
\({x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right)\)
\({x^2} + 2{\rm{x}}y + {y^2} = {\left( {x - y} \right)^2}\)
\(MTC = 3\left( {x + y} \right){\left( {x - y} \right)^2}\)
Nhân tử phụ của 3x+3y là: \({\left( {x - y} \right)^2}\)
Nhân tử phụ của \({x^2} - {y^2}\) là: 3(x−y)
Nhân tử phụ của \({x^2} + 2{\rm{x}}y + {y^2}\) là: 3(x+y)
Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:
\(\begin{array}{l}\frac{1}{{3{\rm{x}} + 3y}} = \frac{{{{\left( {x - y} \right)}^2}}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{2{\rm{x}}}}{{{x^2} - {y^2}}} = \frac{{6{\rm{x}}\left( {x - y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{{x^2} - xy + {y^2}}}{{{x^2} - 2{\rm{x}}y + {y^2}}} = \frac{{3\left( {{x^2} - xy + {y^2}} \right)\left( {x + y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\end{array}\)
Cặp phân thức có cùng mẫu thức: \(\frac{{5{\rm{x}} + 10}}{{4{\rm{x}} - 8}}\) và \(\frac{{4 - 2{\rm{x}}}}{{4\left( {x - 2} \right)}}\)
a) Ta có:
\(\frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{27{{\rm{x}}^3} - 1}} = \frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{\left( {3{\rm{x}} - 1} \right)\left( {9{{\rm{x}}^2} + 3{\rm{x}} + 1} \right)}} = \frac{1}{{3{\rm{x}} - 1}}\)
\(\frac{{{x^2} - 4{\rm{x}}}}{{16 - {x^2}}} = \frac{{x\left( {x - 4} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x\left( {4 - x} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x}}{{4 + x}}\)
b) Mẫu thức chung của hai phân thức nhân được ở câu a là: \(\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)\)
Nhân tử phụ của \(\frac{1}{{3{\rm{x}} - 1}}\) là: \(4 + x\)
Nhân tử phụ của \(\frac{{ - x}}{{4 + x}}\) là : \(3{\rm{x}} - 1\)
Khi đó:
\(\frac{1}{{3{\rm{x}} - 1}} = \frac{{4 + x}}{{\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)}}\)
\(\frac{{ - x}}{{4 + x}} = \frac{{ - x\left( {3{\rm{x}} - 1} \right)}}{{\left( {4 + x} \right)\left( {3{\rm{x}} - 1} \right)}}\)
Cặp phân thức nào có mẫu giống nhau là: \(\frac{{x - 1}}{{3{\rm{x}} + 6}}\) và \(\frac{{x + 1}}{{3\left( {x + 2} \right)}}\)
Vì : \(\frac{{x - 1}}{{3{\rm{x}} + 6}} = \frac{{x - 1}}{{3\left( {x + 2} \right)}}\)
a) Ta có: \({x^3} - 8 = \left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\)
\(4 - 2{\rm{x}} = 2\left( {2 - x} \right) = - 2\left( {x - 2} \right)\)
Mẫu thức chung là: \( - 2\left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\)
Nhân tử phụ của \({x^3} - 8\) là -2
Nhân tử phụ cuae 4 – 2x là \({x^2} + 2{\rm{x}} + 4\)
Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:
\(\begin{array}{l}\frac{1}{{{x^3} - 8}} = \frac{{ - 2}}{{ - 2\left( {{x^3} - 8} \right)}}\\\frac{3}{{4 - 2{\rm{x}}}} = \frac{{3\left( {{x^2} + 2{\rm{x}} + 4} \right)}}{{\left( {4 - 2{\rm{x}}} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)}} = \frac{{3\left( {{x^2} + 2{\rm{x}} + 4} \right)}}{{ - 2\left( {{x^3} - 8} \right)}}\end{array}\)
b) Ta có: \(\begin{array}{l}{x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right)\\{x^2} + 2{\rm{x}} + 1 = {\left( {x + 1} \right)^2}\end{array}\)
Mẫu thức chung là: \({\left( {x + 1} \right)^2}\left( {x - 1} \right)\)
Nhân tử phụ của \(\frac{x}{{{x^2} - 1}}\) là: x + 1
Nhân tử phụ của \(\frac{1}{{{x^2} + 2{\rm{x}} + 1}}\) là x – 1
Khi đó:
\(\frac{x}{{{x^2} - 1}} = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}\)
\(\frac{1}{{{x^2} + 2{\rm{x}} + 1}} = \frac{{x - 1}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}\)
a) Đây là kết luận đúng vì: \( - 6.2{y^2} = - 3y.4y\)
b) Đây là kết luận đúng vì: \(5{\rm{x}}\left( {x + 3} \right) = 5\left( {{x^2} + 3{\rm{x}}} \right) = 5{{\rm{x}}^2} + 15{\rm{x}}\)
c) Đây là kết luận đúng vì: \(3{\rm{x}}\left( {4{\rm{x}} + 1} \right)\left( {1 - 4{\rm{x}}} \right) = 3{\rm{x}}\left( {1 - 16{{\rm{x}}^2}} \right) = - 3{\rm{x}}\left( {16{{\rm{x}}^2} - 1} \right)\)
Khẳng định C là khẳng định sai vì:
Nếu: \(\frac{{x + 1}}{{x - 1}} = \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}}\)
\(\begin{array}{l} \Rightarrow \frac{{x + 1}}{{x - 1}} - \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}} = 0\\ \Rightarrow \frac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) - \left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\\ \Rightarrow \frac{{\left( {{x^3} + 1} \right) - \left( {{x^3} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{2}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\end{array}\)
\( \Rightarrow \) vô lý
\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right).\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right) = \frac{{\left( { - 3{\rm{x}}} \right).\left( { - 5{y^2}} \right)}}{{5{\rm{x}}{y^2}.12{\rm{x}}y}} = \frac{1}{{4{\rm{x}}y}}\)
\(b)\frac{{{x^2} - x}}{{2{\rm{x}} + 1}}.\frac{{4{{\rm{x}}^2} - 1}}{{{x^3} - 1}} = \frac{{x\left( {x - 1} \right).\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}{{\left( {2{\rm{x}} + 1} \right).\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{x\left( {2{\rm{x}} - 1} \right)}}{{{x^2} + x + 1}}\)
a)
\(\begin{array}{l}P + \frac{1}{{x + 2}} = \frac{x}{{{x^2} - 2{\rm{x}} + 4}}\\P = \frac{x}{{{x^2} - 2{\rm{x}} + 4}} - \frac{1}{{x + 2}}\\P = \frac{{x\left( {x + 2} \right) - {x^2} + 2{\rm{x}} - 4}}{{\left( {{x^2} - 2{\rm{x}} + 4} \right)\left( {x + 2} \right)}}\\P = \frac{{{x^2} + 2{\rm{x}} - {x^2} + 2{\rm{x}} + 4}}{{{x^3} + 8}}\\P = \frac{{4{\rm{x}} - 4}}{{{x^3} + 8}}\end{array}\)
b)
\(\begin{array}{l}P - \frac{{4\left( {x - 2} \right)}}{{x + 2}} = \frac{{16}}{{x - 2}}\\P = \frac{{16}}{{x - 2}} + \frac{{4\left( {x - 2} \right)}}{{x + 2}}\\P = \frac{{16\left( {x + 2} \right) + 4\left( {x - 2} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\P = \frac{{16{\rm{x}} + 32 + 4{{\rm{x}}^2} - 16{\rm{x}} + 16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\P = \frac{{4{{\rm{x}}^2} + 48}}{{{x^2} - 4}}\end{array}\)
c)
\(\begin{array}{l}P.\frac{{x - 2}}{{x + 3}} = \frac{{{x^2} - 4{\rm{x}} + 4}}{{{x^2} - 9}}\\ \Rightarrow P = \frac{{{x^2} - 4{\rm{x}} + 4}}{{{x^2} - 9}}.\frac{{x + 3}}{{x - 2}}\\P = \frac{{{{(x - 2)}^2}(x + 3)}}{{(x - 3)(x + 3)(x - 2)}} = \frac{{x - 2}}{{x - 3}}\end{array}\)\(\)
d)
\(\begin{array}{l}P:\frac{{{x^2} - 9}}{{2{\rm{x}} + 4}} = \frac{{{x^2} - 4}}{{{x^2} + 3{\rm{x}}}}\\ \Rightarrow P = \frac{{{x^2} - 4}}{{{x^2} + 3{\rm{x}}}}.\frac{{{x^2} - 9}}{{2{\rm{x}} + 4}}\\P = \frac{{(x - 2)(x + 2)(x - 3)(x + 3)}}{{2{\rm{x}}(x + 3)(x + 2)}}\\P = \frac{{(x - 2)(x - 3)}}{{2{\rm{x}}}}\end{array}\)
a) P=\(\dfrac{4x-4}{x^3-8}\)( lấy VP-VT)
b)P=\(\dfrac{4x^2+48}{x^2-4}\) ( chuyển VT và thành VP+VT)
c) P=\(\dfrac{x-2}{x-3}\) ( chuyển VT thành VP.VT là ra)
d) \(\dfrac{\left(x-2\right)\left(x-3\right)}{2x}\)( lấy VP.VT)
\(\)\(a)\frac{1}{{4{\rm{x}}{y^2}}}\)và \(\frac{5}{{6{{\rm{x}}^2}y}}\)
Ta có: MTC là : \(12{{\rm{x}}^2}{y^2}\).
Nhân tử phụ của phân thức \(\frac{1}{{4{\rm{x}}{y^2}}}\)là 3x
Nhân tử phụ của phân thức \(\frac{5}{{6{{\rm{x}}^2}y}}\)là 2y
Khi đó: \(\frac{1}{{4{\rm{x}}{y^2}}} = \frac{{1.3{\rm{x}}}}{{4{\rm{x}}{y^2}.3{\rm{x}}}} = \frac{{3{\rm{x}}}}{{12{{\rm{x}}^2}{y^2}}}\)
\(\frac{5}{{6{{\rm{x}}^2}y}} = \frac{{5.2y}}{{6{{\rm{x}}^2}y.2y}} = \frac{{10y}}{{12{{\rm{x}}^2}{y^2}}}\)
\(b)\frac{9}{{4{{\rm{x}}^2} - 36}}\)và \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\).
Ta có: \(\begin{array}{l}4{{\rm{x}}^2} - 36 = 4({x^2} - 9) = 4(x - 3)(x + 3)\\{x^2} + 6{\rm{x}} + 9 = {(x + 3)^2}\end{array}\)
MTC là: \(4(x - 3){(x + 3)^2}\)
Nhân tử phụ của phân thức \(\frac{9}{{4{{\rm{x}}^2} - 36}}\)là: x + 3
Nhân tử phụ của phân thức \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\)là 4(x – 3)
Khi đó: \(\begin{array}{l}\frac{9}{{4{{\rm{x}}^2} - 36}} = \frac{9}{{4({x^2} - 9)}} = \frac{9}{{4(x - 3)(x + 3)}} = \frac{{9(x + 3)}}{{4(x - 3){{(x + 3)}^2}}}\\\frac{1}{{{x^2} + 6{\rm{x}} + 9}} = \frac{1}{{{{(x + 3)}^2}}} = \frac{{4(x - 3)}}{{4(x - 3){{(x + 3)}^2}}}\end{array}\)