K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a) Ta có: \(\frac{5}{{2 - x}} = \frac{{ - 5}}{{x - 2}}\)

\({x^2} - 4{\rm{x}} + 4 = {\left( {x - 2} \right)^2}\)

\(MTC = \left( {x + 2} \right){\left( {x - 2} \right)^2}\)

Nhân tử phụ của x+2 là \({\left( {x - 2} \right)^2}\)

Nhân tử phụ của\({x^2} - 4{\rm{x}} + 4\)  là \({\left( {x - 2} \right)^2}\)

Nhân tử phụ của x - 2 là (x+2)(x−2)

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:

\(\begin{array}{l}\frac{1}{{x + 2}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{{x + 1}}{{{x^2} - 4{\rm{x  -  4}}}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{5}{{2 - x}} = \frac{{ - 5\left( {x + 2} \right)\left( {x - 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\end{array}\)

b) Ta có: 3x+3y=3(x+y)

            \({x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right)\)

            \({x^2} + 2{\rm{x}}y + {y^2} = {\left( {x - y} \right)^2}\)

\(MTC = 3\left( {x + y} \right){\left( {x - y} \right)^2}\)

Nhân tử phụ của 3x+3y là: \({\left( {x - y} \right)^2}\)

Nhân tử phụ của \({x^2} - {y^2}\) là: 3(x−y)

Nhân tử phụ của \({x^2} + 2{\rm{x}}y + {y^2}\) là: 3(x+y)

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có: 

\(\begin{array}{l}\frac{1}{{3{\rm{x}} + 3y}} = \frac{{{{\left( {x - y} \right)}^2}}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{2{\rm{x}}}}{{{x^2} - {y^2}}} = \frac{{6{\rm{x}}\left( {x - y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{{x^2} - xy + {y^2}}}{{{x^2} - 2{\rm{x}}y + {y^2}}} = \frac{{3\left( {{x^2} - xy + {y^2}} \right)\left( {x + y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\)\(a)\frac{1}{{4{\rm{x}}{y^2}}}\)và \(\frac{5}{{6{{\rm{x}}^2}y}}\)

Ta có: MTC là : \(12{{\rm{x}}^2}{y^2}\).

Nhân tử phụ của phân thức \(\frac{1}{{4{\rm{x}}{y^2}}}\)là 3x

Nhân tử phụ của phân thức \(\frac{5}{{6{{\rm{x}}^2}y}}\)là 2y

Khi đó: \(\frac{1}{{4{\rm{x}}{y^2}}} = \frac{{1.3{\rm{x}}}}{{4{\rm{x}}{y^2}.3{\rm{x}}}} = \frac{{3{\rm{x}}}}{{12{{\rm{x}}^2}{y^2}}}\)

\(\frac{5}{{6{{\rm{x}}^2}y}} = \frac{{5.2y}}{{6{{\rm{x}}^2}y.2y}} = \frac{{10y}}{{12{{\rm{x}}^2}{y^2}}}\)

 \(b)\frac{9}{{4{{\rm{x}}^2} - 36}}\)và \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\).

Ta có: \(\begin{array}{l}4{{\rm{x}}^2} - 36 = 4({x^2} - 9) = 4(x - 3)(x + 3)\\{x^2} + 6{\rm{x}} + 9 = {(x + 3)^2}\end{array}\)

MTC là: \(4(x - 3){(x + 3)^2}\)

Nhân tử phụ của phân thức \(\frac{9}{{4{{\rm{x}}^2} - 36}}\)là: x + 3

Nhân tử phụ của phân thức \(\frac{1}{{{x^2} + 6{\rm{x}} + 9}}\)là 4(x – 3)

Khi đó: \(\begin{array}{l}\frac{9}{{4{{\rm{x}}^2} - 36}} = \frac{9}{{4({x^2} - 9)}} = \frac{9}{{4(x - 3)(x + 3)}} = \frac{{9(x + 3)}}{{4(x - 3){{(x + 3)}^2}}}\\\frac{1}{{{x^2} + 6{\rm{x}} + 9}} = \frac{1}{{{{(x + 3)}^2}}} = \frac{{4(x - 3)}}{{4(x - 3){{(x + 3)}^2}}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Cặp phân thức có cùng mẫu thức: \(\frac{{5{\rm{x}} + 10}}{{4{\rm{x}} - 8}}\) và \(\frac{{4 - 2{\rm{x}}}}{{4\left( {x - 2} \right)}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a) Đây là kết luận đúng vì: \( - 6.2{y^2} =  - 3y.4y\)

b) Đây là kết luận đúng vì: \(5{\rm{x}}\left( {x + 3} \right) = 5\left( {{x^2} + 3{\rm{x}}} \right) = 5{{\rm{x}}^2} + 15{\rm{x}}\)

c) Đây là kết luận đúng vì: \(3{\rm{x}}\left( {4{\rm{x}} + 1} \right)\left( {1 - 4{\rm{x}}} \right) = 3{\rm{x}}\left( {1 - 16{{\rm{x}}^2}} \right) =  - 3{\rm{x}}\left( {16{{\rm{x}}^2} - 1} \right)\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right).\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right) = \frac{{\left( { - 3{\rm{x}}} \right).\left( { - 5{y^2}} \right)}}{{5{\rm{x}}{y^2}.12{\rm{x}}y}} = \frac{1}{{4{\rm{x}}y}}\)

\(b)\frac{{{x^2} - x}}{{2{\rm{x}} + 1}}.\frac{{4{{\rm{x}}^2} - 1}}{{{x^3} - 1}} = \frac{{x\left( {x - 1} \right).\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}{{\left( {2{\rm{x}} + 1} \right).\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{x\left( {2{\rm{x}} - 1} \right)}}{{{x^2} + x + 1}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right):\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right) = \frac{{ - 3{\rm{x}}}}{{5{\rm{x}}{y^2}}}.\frac{{ - 12{\rm{x}}y}}{{5{y^2}}} = \frac{{36{{\rm{x}}^2}y}}{{25{\rm{x}}{y^4}}}\)

b) \(\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}:\frac{4{{\text{x}}^{2}}+4\text{x}+1}{4{{\text{x}}^{2}}+2\text{x}+1}=\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}.\frac{4{{\text{x}}^{2}}+2\text{x}+1}{4{{\text{x}}^{2}}+4\text{x}+1}\)

\(=\frac{\left( 2\text{x}-1 \right)\left( 2\text{x}+1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right)}{\left( 2\text{x}-1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right){{\left( 2\text{x}+1 \right)}^{2}}}=\frac{1}{2\text{x}+1}\).

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\begin{array}{l}a)\frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}.\left( {\frac{1}{{2{\rm{x}} + 1}} + \frac{1}{{2{\rm{x}} - 1}} + \frac{1}{{1 - 4{{\rm{x}}^2}}}} \right)\\ = \frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}.\frac{{2{\rm{x}} - 1 + 2{\rm{x}} + 1 - 1}}{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}{{\left( {4{\rm{x}} - 1} \right)\left( {4{\rm{x + 1}}} \right)}}.\frac{{4{\rm{x}} - 1}}{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{1}{{4{\rm{x}} + 1}}\\b)\left( {\frac{{x + y}}{{xy}} - \frac{2}{x}} \right).\frac{{{x^3}{y^3}}}{{{x^3} - {y^3}}}\\ = \frac{{x + y - 2y}}{{xy}}.\frac{{{x^3}{y^3}}}{{{x^3} - {y^3}}}\\ = \frac{{\left( {x - y} \right).{x^3}{y^3}}}{{xy\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}} = \frac{{{x^2}{y^2}}}{{{x^2} + xy + y{}^2}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{z{\rm{x}}}} = \frac{z}{{xyz}} + \frac{x}{{xyz}} + \frac{y}{{xyz}} = \frac{{z + x + y}}{{xyz}}\)

\(\begin{array}{l}b)\frac{x}{{2{\rm{x}} - y}} + \frac{y}{{2{\rm{x}} + y}} + \frac{{3{\rm{x}}y}}{{{y^2} - 4{{\rm{x}}^2}}}\\ = \frac{x}{{2{\rm{x}} - y}} + \frac{y}{{2{\rm{x}} + y}} - \frac{{3{\rm{x}}y}}{{4{{\rm{x}}^2} - {y^2}}}\\ = \frac{{x\left( {2{\rm{x}} + y} \right) + y\left( {2{\rm{x}} - y} \right)  - 3{\rm{x}}y}}{{\left( {2{\rm{x}} - y} \right)\left( {2{\rm{x}} + y} \right)}}\\ = \frac{{2{{\rm{x}}^2} + xy + 2{\rm{x}}y - {y^2} - 3{\rm{x}}y}}{{\left( {2{\rm{x}} - y} \right)\left( {2{\rm{x}} + y} \right)}} = \frac{{2{{\rm{x}}^2} - {y^2}}}{{\left( {2{\rm{x}} - y} \right)\left( {2{\rm{x}} + y} \right)}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

Cặp phân thức nào có mẫu giống nhau là: \(\frac{{x - 1}}{{3{\rm{x}} + 6}}\) và \(\frac{{x + 1}}{{3\left( {x + 2} \right)}}\)

Vì : \(\frac{{x - 1}}{{3{\rm{x}} + 6}} = \frac{{x - 1}}{{3\left( {x + 2} \right)}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a) Ta có: \({x^3} - 8 = \left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\)

\(4 - 2{\rm{x}} = 2\left( {2 - x} \right) =  - 2\left( {x - 2} \right)\)

Mẫu thức chung là: \( - 2\left( {x - 2} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)\)

Nhân tử phụ của \({x^3} - 8\) là -2

Nhân tử phụ cuae 4 – 2x là \({x^2} + 2{\rm{x}} + 4\)

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:

\(\begin{array}{l}\frac{1}{{{x^3} - 8}} = \frac{{ - 2}}{{ - 2\left( {{x^3} - 8} \right)}}\\\frac{3}{{4 - 2{\rm{x}}}} = \frac{{3\left( {{x^2} + 2{\rm{x}} + 4} \right)}}{{\left( {4 - 2{\rm{x}}} \right)\left( {{x^2} + 2{\rm{x}} + 4} \right)}} = \frac{{3\left( {{x^2} + 2{\rm{x}} + 4} \right)}}{{ - 2\left( {{x^3} - 8} \right)}}\end{array}\)

b) Ta có: \(\begin{array}{l}{x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right)\\{x^2} + 2{\rm{x}} + 1 = {\left( {x + 1} \right)^2}\end{array}\)

Mẫu thức chung là: \({\left( {x + 1} \right)^2}\left( {x - 1} \right)\)

Nhân tử phụ của \(\frac{x}{{{x^2} - 1}}\) là: x + 1

Nhân tử phụ của \(\frac{1}{{{x^2} + 2{\rm{x}} + 1}}\) là x – 1

Khi đó:

\(\frac{x}{{{x^2} - 1}} = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}\)

\(\frac{1}{{{x^2} + 2{\rm{x}} + 1}} = \frac{{x - 1}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}\)