Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(DK:x\ge\frac{2020}{2019}\)
PT\(\Leftrightarrow\left(\sqrt{2020x-2019}-\sqrt{2019x-2020}\right)+2019\left(x+1\right)=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\right)=0\)
:)
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóvhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó
B1 Tìm ĐKXĐ
B2 Đặt pt đã cho là pt (1)=>pt (1) <=>\(\frac{x+3}{\sqrt{4x-1}-\sqrt{3x-2}}\) =5
B3 Trục căn thứ ở mẫu => (1) <=> \(\sqrt{4x+1}+\sqrt{3x-2}\)=5
B4 Bình phương 2 vế được (1)<=>\(26-7x\)=\(2\sqrt{12x^2-5x-2}\)
B5 Tiếp tục bình phương hai vế ta tìm được x=2 (Thỏa mãn)
\(Q=\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\left(ĐK:x\ge0;x\ne16\right)\\ =\dfrac{x-4\sqrt{x}+\sqrt{x}-4}{x-4\sqrt{x}+3\sqrt{x}-12}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-4\right)+3\left(\sqrt{x}-4\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-4\right)}\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(P=\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)
Đặt \(\sqrt{x^2+2020}=a>0\Rightarrow a^2-x^2=2020\)
Phương trình trở thành:
\(x^4+a=a^2-x^2\)
\(\Leftrightarrow x^4-a^2+x^2+a=0\)
\(\Leftrightarrow\left(x^2+a\right)\left(x^2-a+1\right)=0\)
\(\Leftrightarrow a=x^2+1\)
\(\Leftrightarrow\sqrt{x^2+2020}=x^2+1\)
\(\Leftrightarrow x^2+2020=x^4+2x^2+1\)
\(\Leftrightarrow x^4+x^2-2019=0\)
Bạn tự giải nốt, đơn giản rồi, chỉ là số quá to
Bài 1: ĐK:....
Cộng theo vế 3 pt trên ta có
\(2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
\(\Leftrightarrow4x+4y+4z-2\sqrt{4x-1}-2\sqrt{4y-1}-2\sqrt{4z-1}=0\)
\(\Leftrightarrow\left(4x-1-2\sqrt{4x-1}+1\right)+\left(4y-1-2\sqrt{4y-1}+1\right)+\left(4z-1-2\sqrt{4z-1}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
Xảy ra khi \(\hept{\begin{cases}\sqrt{4x-1}=1\\\sqrt{4y-1}=1\\\sqrt{4z-1}=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}4x-1=1\\4y-1=1\\4z-1=1\end{cases}}\)\(\Rightarrow x=y=z=\frac{1}{2}\)
\(\sqrt{2x+1}-\sqrt{5-x}+x-6=0\)
\(\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(1-\sqrt{5-x}\right)+x-4=0\)
\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{5-x}+1}+x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{5-x}+1}+1\right)=0\)
\(\Leftrightarrow x=4\)
\(x^2-\sqrt{x^2-5}=7\)
\(\Leftrightarrow\sqrt{x^2-5}=x^2-7\)
\(\Leftrightarrow\left(\sqrt{x^2-5}\right)^2=\left(x^2-7\right)^2\)
\(\Leftrightarrow x^2-5=\left(x^2\right)^2-2.x^2.7+7^2\)
\(\Leftrightarrow x^2-5=x^4-14x^2+49\)
\(\Leftrightarrow-x^4+x^2+14x^2-5-49=0\)
\(\Leftrightarrow-x^4+15x^2-54=0\)
Đặt : \(t=x^2\left(t\ge0\right)\) , ta có :
\(-t^2+15t-54=0\)
\(\left(a=-1;b=15;c=-54\right)\)
\(\Delta=b^2-4ac\)
\(=15^2-4.\left(-1\right).\left(-54\right)\)
\(=225+4.\left(-54\right)\)
\(=225-216\)
\(=9>0\)
\(\sqrt{\Delta}=\sqrt{9}=3\)
\(t_1=\frac{-15+3}{2.\left(-1\right)}=6\) ( nhận )
\(t_2=\frac{-15-3}{2.\left(-1\right)}=9\) ( nhận )
Vs : \(t_1=6\Rightarrow x^2=6\Rightarrow x=\pm\sqrt{6}\)
Vs : \(t_2=9\Rightarrow x^2=9\Rightarrow x=\pm3\)
Vậy phương trình có 4 nghiệm : \(x_1=3;x_2=-3;x_3=6;x_4=-6\)
Cái đề có gì đó sai sai
\(\)
a) \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\) (ĐKXĐ: \(x\ne-1;y\ne-4\))
Đặt \(\dfrac{x}{x+1}=a;\dfrac{1}{y+4}=b\left(a\ne0;b\ne0\right)\)
Hệ phương trình đã cho trở thành
\(\left\{{}\begin{matrix}3a-2b=4\left(1\right)\\2a-5b=9\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow2a=9+5b\Leftrightarrow a=\dfrac{9+5b}{2}\)
Thay \(a=\dfrac{9+5b}{2}\) vào \(\left(1\right)\), ta có:
\(\dfrac{3\left(9+5b\right)}{2}-2b=4\)
\(\Leftrightarrow27+15b-4b=8\)
\(\Leftrightarrow11b=-19\Leftrightarrow b=\dfrac{-19}{11}\)
Thay \(b=\dfrac{-19}{11}\) vào \(\left(2\right)\), ta có:
\(2a-5\cdot\dfrac{-19}{11}=9\)
\(\Leftrightarrow a=\dfrac{2}{11}\)
Với \(a=\dfrac{2}{11}\Rightarrow\dfrac{x}{x+1}=\dfrac{2}{11}\)
\(\Leftrightarrow11x=2x+2\Leftrightarrow x=\dfrac{2}{9}\)
Với \(b=\dfrac{-19}{11}\Rightarrow\dfrac{1}{y+4}=\dfrac{-19}{11}\)
\(\Leftrightarrow-19y-76=11\)
\(\Leftrightarrow y=\dfrac{-90}{19}\)
b,Ta có:
\(PT\Leftrightarrow7+3.\sqrt[3]{2+x}.\sqrt[3]{5-x}\left(\sqrt[3]{2+x}+\sqrt[3]{5-x}\right)=1\)
Thay \(\sqrt[3]{2+x}+\sqrt[3]{5-x}=1\) vào PT
\(\Rightarrow\) \(3.\sqrt[3]{2+x}.\sqrt[3]{5-x}=-6\)
\(\Leftrightarrow\sqrt[3]{2+x}.\sqrt[3]{5-x}=-2\)
\(\Leftrightarrow\left(2+x\right)\left(5-x\right)=-8\)
\(\Leftrightarrow x^2-3x-18=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
Thử lại thấy x= - 3, x=6 thỏa mãn
Vậy x= -3, x = 6