K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

\(Q=\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\left(ĐK:x\ge0;x\ne16\right)\\ =\dfrac{x-4\sqrt{x}+\sqrt{x}-4}{x-4\sqrt{x}+3\sqrt{x}-12}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-4\right)+3\left(\sqrt{x}-4\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-4\right)}\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(P=\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

Ta có: \(xy+yz+xz=1\)

\(\Rightarrow \left\{\begin{matrix} x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\\ y^2+1=y^2+xy+yz+xz=(y+z)(y+x)\\ z^2+1=z^2+xy+yz+xz=(z+x)(z+y)\end{matrix}\right.\)

Do đó:

\(\sqrt{\frac{(y^2+1)(z^2+1)}{x^2+1}}=\sqrt{\frac{(y+z)(y+x)(z+x)(z+y)}{(x+y)(x+z)}}=\sqrt{(y+z)^2}=y+z\)

\(\Rightarrow x\sqrt{\frac{(y^2+1)(z^2+1)}{x^2+1}}=x(y+z)\)

Hoàn toàn tt:

\(y\sqrt{\frac{(z^2+1)(x^2+1)}{y^2+1}}=y(x+z)\); \(z\sqrt{\frac{(x^2+1)(y^2+1)}{z^2+1}}=z(x+y)\)

Do đó:

\(A=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)

1 tháng 8 2018

\(\dfrac{1}{\sqrt{x-1}-\sqrt{x}}+\dfrac{1}{\sqrt{x-1}+\sqrt{x}}+\dfrac{\sqrt{x^3}-x}{\sqrt{x-1}}\)

\(\Leftrightarrow-\left(\sqrt{x-1}+\sqrt{x}\right)-\left(\sqrt{x-1}-\sqrt{x}\right)+\dfrac{x\sqrt{x}-x}{\sqrt{x-1}}\)

\(\Leftrightarrow-\sqrt{x-1}-\sqrt{x}-\sqrt{x-1}+\sqrt{x}+\dfrac{x\sqrt{x}-x}{\sqrt{x-1}}\)

\(\Leftrightarrow-2\sqrt{x-1}+\dfrac{x\sqrt{x}-x}{\sqrt{x-1}}\)

\(\Leftrightarrow\dfrac{-2\left(x-1\right)+x\sqrt{x}-x}{\sqrt{x-1}}\)

\(\Leftrightarrow\dfrac{-2x+2+x\sqrt{x}-x}{\sqrt{x-1}}\)

\(\Leftrightarrow\dfrac{-3x+2+x\sqrt{x}}{\sqrt{x-1}}\)

1 tháng 8 2018

À mình quên ĐKXĐ rồi bạn bổ sung vô nha :v

a) \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\) (ĐKXĐ: \(x\ne-1;y\ne-4\))

Đặt \(\dfrac{x}{x+1}=a;\dfrac{1}{y+4}=b\left(a\ne0;b\ne0\right)\)

Hệ phương trình đã cho trở thành

\(\left\{{}\begin{matrix}3a-2b=4\left(1\right)\\2a-5b=9\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow2a=9+5b\Leftrightarrow a=\dfrac{9+5b}{2}\)

Thay \(a=\dfrac{9+5b}{2}\) vào \(\left(1\right)\), ta có:

\(\dfrac{3\left(9+5b\right)}{2}-2b=4\)

\(\Leftrightarrow27+15b-4b=8\)

\(\Leftrightarrow11b=-19\Leftrightarrow b=\dfrac{-19}{11}\)

Thay \(b=\dfrac{-19}{11}\) vào \(\left(2\right)\), ta có:

\(2a-5\cdot\dfrac{-19}{11}=9\)

\(\Leftrightarrow a=\dfrac{2}{11}\)

Với \(a=\dfrac{2}{11}\Rightarrow\dfrac{x}{x+1}=\dfrac{2}{11}\)

\(\Leftrightarrow11x=2x+2\Leftrightarrow x=\dfrac{2}{9}\)

Với \(b=\dfrac{-19}{11}\Rightarrow\dfrac{1}{y+4}=\dfrac{-19}{11}\)

\(\Leftrightarrow-19y-76=11\)

\(\Leftrightarrow y=\dfrac{-90}{19}\)

27 tháng 12 2018

b,Ta có:

\(PT\Leftrightarrow7+3.\sqrt[3]{2+x}.\sqrt[3]{5-x}\left(\sqrt[3]{2+x}+\sqrt[3]{5-x}\right)=1\)

Thay \(\sqrt[3]{2+x}+\sqrt[3]{5-x}=1\) vào PT

\(\Rightarrow\) \(3.\sqrt[3]{2+x}.\sqrt[3]{5-x}=-6\)

\(\Leftrightarrow\sqrt[3]{2+x}.\sqrt[3]{5-x}=-2\)

\(\Leftrightarrow\left(2+x\right)\left(5-x\right)=-8\)

\(\Leftrightarrow x^2-3x-18=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

Thử lại thấy x= - 3, x=6 thỏa mãn

Vậy x= -3, x = 6

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)

\(=\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{y}\left(x-y\right)}{x-y}\right):\dfrac{x+2\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)\(=\left(\sqrt{x}+\sqrt{y}-\sqrt{y}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)

 

12 tháng 10 2022

a: \(=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{1}{2}\sqrt{7}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)

\(=4+\sqrt{11}-3\sqrt{7}\)

b: \(VT=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y+2x+2y}{2\left(x-y\right)}\)

\(=\dfrac{2x+4\sqrt{xy}+2y}{2\left(x-y\right)}=\dfrac{x+2\sqrt{xy}+y}{x-y}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)

20 tháng 11 2022

\(B=\dfrac{xy}{xy}+\dfrac{\left(x-y\right)x}{x\left(x-y\right)}-\dfrac{y\left(x-y\right)}{y\left(x-y\right)}=1\)