Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(DK:x\ge\frac{2020}{2019}\)
PT\(\Leftrightarrow\left(\sqrt{2020x-2019}-\sqrt{2019x-2020}\right)+2019\left(x+1\right)=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\right)=0\)
:)
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóvhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó
Theo đề bài:
\(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(1)
Lại có: \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(\sqrt{x^2+\sqrt{2020}}-x\right)=\sqrt{2020}\)(2)
Và \(\left(\sqrt{y^2+\sqrt{2020}}-y\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(3)
Từ (1) và (3) => \(x+\sqrt{x^2+\sqrt{2020}}=\sqrt{y^2+\sqrt{2020}}-y\)
<=> \(x+y=-\sqrt{x^2+\sqrt{2020}}+\sqrt{y^2+\sqrt{2020}}\)(4)
Từ (1) và (2) => \(\sqrt{x^2+\sqrt{2020}}-x=\sqrt{y^2+\sqrt{2020}}+y\)
<=> \(x+y=\sqrt{x^2+\sqrt{2020}}-\sqrt{y^2+\sqrt{2020}}\)(5)
Từ (4) ( 5 ) => x + y = - ( x + y ) <=> x = - y
=> \(M=9x^4+7x^4-12x^2+4x^2+5\)
\(=16x^4-8x^2+5=\left(4x^2-1\right)^2+4\ge4\)
Dấu "=" xảy ra <=> \(4x^2-1=0\)<=> \(x=\pm\frac{1}{2}\)
Với x = 1/2 => (x; y) = ( 1/2; -1/2)
Với x = -1/2 => ( x; y ) = ( -1/2; 1/2)
Vậy min M = 4 đạt tại ....
Theo đề ta có
\(x=2-\sqrt{3}\)
\(\Rightarrow\left(4-x\right)x=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)
Q = x5 - 3x4 - 3x3 + 6x2 - 20x + 2020
= (x5 - 4x4) + (x4 - 4x3) + (x3 - 4x2) + (10x2 - 40x) + 20x + 2020
= - x3 - x2 - x - 10 + 20x + 2020
= (- x3 + 4x2) + ( - 5x2 + 20x) - x + 2010
= x + 5 - x + 2010 = 2015
Điều kiện x \(\ge\frac{1}{4}\)
Đặt a = \(\sqrt{x-\frac{1}{4}}\)(a \(\ge0\))
=> x = a2 + \(\frac{1}{4}\)
=> PT <=> 2a2 + \(\frac{1}{2}\)+ \(\sqrt{a^2+\frac{1}{4}+a}\)= 2
<=> \(\sqrt{a^2+\frac{1}{4}+a}\)= \(\frac{3}{2}-2a\)
<=> a2 + 0,25 + a = 4a4 + 2,25 - 6a2
<=> 4a4 - 7a2 - a + 2 = 0
<=> (a + 1)(2a - 1)(2a2 - a - 2) = 0
<=> a = 0,5
<=> x = 0,5
Đặt \(\sqrt{x^2+2020}=a>0\Rightarrow a^2-x^2=2020\)
Phương trình trở thành:
\(x^4+a=a^2-x^2\)
\(\Leftrightarrow x^4-a^2+x^2+a=0\)
\(\Leftrightarrow\left(x^2+a\right)\left(x^2-a+1\right)=0\)
\(\Leftrightarrow a=x^2+1\)
\(\Leftrightarrow\sqrt{x^2+2020}=x^2+1\)
\(\Leftrightarrow x^2+2020=x^4+2x^2+1\)
\(\Leftrightarrow x^4+x^2-2019=0\)
Bạn tự giải nốt, đơn giản rồi, chỉ là số quá to