Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có \(\frac{x^2+y^2}{xy}=\frac{25}{12}\)
\(\Leftrightarrow 12(x^2+y^2)-25xy=0\)
\(\Leftrightarrow (3x-4y)(4x-3y)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-4y=0\\4x-3y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4y}{3}\left(1\right)\\x=\dfrac{3y}{4}\left(2\right)\end{matrix}\right.\)
Với (1):
\(A=\frac{x-y}{x+y}=\frac{\frac{4}{3}y-y}{\frac{4}{3}y+y}=\frac{\frac{1}{3}y}{\frac{7}{3}y}=\frac{1}{7}\)
Với (2)
\(A=\frac{x-y}{x+y}=\frac{\frac{3}{4}y-y}{\frac{3}{4}y+y}=\frac{\frac{-1}{4}y}{\frac{7}{4}y}=\frac{-1}{7}\)
Vậy
\(A=\pm \frac{1}{7}\)
Lời giải:
\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow 3(x^2+y^2)=10xy\)
\(\Leftrightarrow 3x^2-10xy+3y^2=0\)
Đặt \(x=ty\) thì \(3(ty)^2-10ty.y+3y^2=0\)
\(\Leftrightarrow y^2(3t^2-10t+3)=0\)
\(\Rightarrow 3t^2-10t+3=0\) (do $y\neq 0$)
\(\Leftrightarrow (t-3)(3t-1)=0\Rightarrow \left[\begin{matrix} t=3\\ t=\frac{1}{3}\end{matrix}\right.\)
\(B=\frac{x-y}{x+y}=\frac{ty-y}{ty+y}=\frac{t-1}{t+1}=\left[\begin{matrix} \frac{1}{2}\\ \frac{-1}{2}\end{matrix}\right.\)
Vậy..........
Bài 3:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)
\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)
Theo BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)
Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Bài 1: Thiếu đề.
Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)
Bài 4 a) Sai đề với \(x<0\)
b) Áp dụng BĐT AM-GM:
\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)
Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)
Bài 6: Áp dụng BĐT AM-GM cho $6$ số:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=d=1\)
Ta có : x^2+y^2/xy=12/25
=>12(x^2+y^2)=25xy
=>12(x^2+2xy+y^2)=49xy
=>12(x+y)^2=49xy
=>(x+y)^2=49xy/12 (1)
Ta có : x^2+y^2/xy=12/25
=>12(x^2+y^2)=25xy
=>12(x^2-2xy+y^2)=xy
=>12(x-y)^2=xy
=>(x-y)^2=xy/12 (2)
Từ (1) và (2) suy ra :
(x-y)^2/(x+y)^2=1/49
Vì x<y<0 nên x-y/x=y=-1/7
Tick cho mik nhé