K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

\(ax^3+acx^2+ax+bx^2+bcx+b\) =>\(\hept{\begin{cases}a=1\\ac+b=0\\a+bc=2;b=2\end{cases}}=>\hept{\begin{cases}a=1\\b=2\\c=-2\end{cases}}\)

1 tháng 8 2020

( ax + b )( x2 + cx + 1 ) = x3 - 3x + 2

<=> ax( x2 + cx + 1 ) + b( x2 + cx + 1 ) = x3 - 3x + 2

<=> ax3 + acx2 + ax + bx2 + bcx + b = x3 - 3x + 2

<=> ax3 + ( ac + b )x2 + ( a + bc )x + b = x3 - 3x + 2

<=> \(\hept{\begin{cases}a=1\\ac+b=0\\a+bc=-3\end{cases}}\)và b = 2

<=> \(\hept{\begin{cases}a=1\\b=2\\c=-2\end{cases}}\)

9 tháng 9 2019

Tiểu biểu một câu thôi, mấy câu còn lại tương tự. 

Tư tưởng là phân tích vế trái để sử dụng đồng nhất hệ số.

b) \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)

\(\Leftrightarrow ax^3-ax^2+bx^2-ax-bx-b=ax^3+cx^2-1\)

\(\Leftrightarrow ax^3+x^2\left(-a+b\right)-x\left(a+b\right)-b=ax^3+c\cdot x^2-0\cdot x-1\)

Đồng nhất hệ số:

\(\hept{\begin{cases}-a+b=c\\a+b=0\\b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=1\\c=2\end{cases}}\)

Các câu còn lại tương tự.

28 tháng 6 2021

Ta có: x4 + x3 + ax + b = (x2 + x - 2)(x2 + cx + d)

<=> x4 + x3 + ax + b = x4 + cx3 + dx2 + x3 + cx2 + dx - 2x2 - 2cx - 2d

<=> x4 + x3 + ax + b = x4 + (c + 1)x3 + (d + c - 2)x2 + (d - 2c)x - 2d

Đồng nhất hệ số:

 c + 1  = 1

d + c - 2 = 0

d - 2c = a

-2d = b

<=> c = 0

d = 2 + c = 2

a = d - 2c = 2 - 2.0 = 2

b = -2.2 = -4

Vậy a = d = 2; c = 0; b = -4

9 tháng 9 2019

Phá tung cái ngoặc ra thôi mà nhỉ?

a) \(\left(3x-5\right)\left(3x+b\right)=9x^2+\left(3b-15\right)x-5b\)

Đồng nhất hệ số ta có: \(\left\{{}\begin{matrix}9=a\\3b-15=1\\-5b=c\end{matrix}\right.\) giải cái hệ 3 pt này là thu được a, b, c

9 tháng 9 2019

Câu đấy là \(\left(2x-5\right)\) mà bạn. tth