Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a kham khảo nha , e nhờ a e lm chứ ko phải e lm nha !
\(\left(x-2\right)\left(\frac{3}{x}+2-\frac{5}{2x}-4+\frac{8}{x^2}-4\right)\)
\(\left(x-2\right)\left[\left(\frac{3}{x}-\frac{5}{2x}\right)-6+\frac{8}{x^2}\right]\)
\(\left(x-2\right)\left(\frac{1}{2x}-6+\frac{8}{x^2}\right)\)
\(\left(x-2\right)\left(\frac{3}{x+2}-\frac{5}{2x-4}+\frac{8}{x^2-4}\right)\)
\(=\left(x-2\right)\left[\frac{3}{x+2}-\frac{5}{2\left(x-2\right)}+\frac{8}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=\left(x-2\right)\left[\frac{3.2\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}-\frac{5\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{8.2}{2\left(x-2\right)\left(x+2\right)}\right]\)
\(=\left(x-2\right)\left[\frac{6\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}-\frac{5\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{16}{2\left(x-2\right)\left(x+2\right)}\right]\)
\(=\left(x-2\right)\left[\frac{6\left(x-2\right)-5\left(x+2\right)+16}{2\left(x-2\right)\left(x+2\right)}\right]\)
\(=\frac{\left(x-2\right)\left(x-6\right)}{2\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x-6}{2\left(x+2\right)}\)
\(\dfrac{x^2-2x-8}{2x^2+9x+10}\)
\(=\dfrac{x^2-4x+2x-8}{2x^2+4x+5x+10}\)
\(=\dfrac{\left(x-4\right)\left(x+2\right)}{\left(x+2\right)\left(2x+5\right)}\)
\(=\dfrac{x-4}{2x+5}\)
\(\dfrac{x^2-2x-8}{2x^2+9x+10}\)
\(=\dfrac{\left(x-4\right)\left(x+2\right)}{2x^2+4x+5x+10}\)
\(=\dfrac{\left(x-4\right)\left(x+2\right)}{\left(x+2\right)\left(2x+5\right)}\)
\(=\dfrac{x-4}{2x+5}\)
a) ĐKXĐ: x3 + 8 \(\ne\)0
\(\Leftrightarrow\)(x + 2)(x2 - 2x + 4) \(\ne0\)
Vì x2 - 2x + 4 > 0
nên x + 2 \(\ne0\) \(\Rightarrow\)x \(\ne-2\)
b) \(P=\frac{2x^2-4x+8}{x^3+8}\)\(=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)\(=\frac{2}{x+2}\)
c) Khi x = 2 thì P = \(\frac{2}{2+2}\)= \(\frac{1}{2}\)
\(x^2-2x-8\)
=\(x^2-2x+1-9\)
=\((x-1)^2 -9\)
=(x-1-3)(x-1+3)
=(x-4)(x+2)
\(x^2-2x-8=\left(x-4\right)\left(x+2\right)\)