Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định ; \(\hept{\begin{cases}x,y\ge0\\x,y\in Z\end{cases}}\)
Ta có : \(\sqrt{x}+\sqrt{y}=\sqrt{931}\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=931\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2-x+y=931-x+y\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2-\left(\sqrt{x}\right)^2+\sqrt{y}.\sqrt{y}=931-x+y\)
\(\Leftrightarrow2\sqrt{y}.\left(\sqrt{x}+\sqrt{y}\right)=931-x+y\)
\(\Leftrightarrow4y\left(\sqrt{x}+\sqrt{y}\right)^2=\left(931-x+y\right)^2\)
\(\Leftrightarrow4y.931=\left(931-x+y\right)^2\)
\(\Leftrightarrow2^2.7^2.19.y=\left(931-x+y\right)^2\)
Nhận xét : Vế phải là bình phương của một số tự nhiên, do vậy đẳng thức xảy ra khi vế trái cũng là bình phương của một số tự nhiên. Vậy thì \(y=19.k^2\)với k là một số tự nhiên
Ta xét với k = 1,2,3,.... thì chọn được k = 7 thỏa mãn. (Chú ý điều kiện \(y\le931\))
Vậy (x;y) = (0;931) ; (931;0)
Ta vẫn chọn được hai cặp (x;y) vì do vai trò của hai số này bình đẳng.
\(\Leftrightarrow\sqrt{x}+\sqrt{y}=7\sqrt{19}\)
đặt \(\sqrt{x}=a.\sqrt{19}\);\(\sqrt{y}=a.\sqrt{19}\left(a+b=7\right)\)
Vì \(a,b\in N\)nên \(a\in\hept{ }0;1;2;3;4;5;6;7\)
xét từng TH rồi được kết quả (x;y) là (0;931),(19;684),(76;475),(171,304),(304;171),(475;76),(684;19),(931;0)
Tham khảo:
https://cunghoctot.vn/forum/topic/nghiem-nguyen-can-x-can-y-can-931
1. pt (1) \(\Leftrightarrow x^2+y^2=19+xy\)
pt (2) \(\Leftrightarrow\left(x^2+y^2\right)^2-x^2y^2=931\)
\(\Leftrightarrow\left(19+xy\right)^2-x^2y^2=931\)
\(\Leftrightarrow361+38xy+x^2y^2-x^2y^2=931\)
\(\Leftrightarrow xy=15\) thay vào (*) tính được \(x^2+y^2=34\)
\(\Rightarrow\) \(x+y=8\)
Có \(xy=15\) và \(x+y=8\) dễ dàng tìm được x và y
2. \(\left(x+2\right)\sqrt{x+1}=2x+1\) (1) với \(x\ge-1\)
Đặt \(\sqrt{x+1}=t\ge0\)
\(\left(1\right)\Rightarrow\left(t^2+1\right)t=2t^2-1\)
\(\Leftrightarrow t^3-2t^2+t+1=0\)
Tuy nhiên pt này ko có nghiệm ko âm nên ko tìm được giá trị của t
Suy ra pt ban đầu vô nghiệm
a) \(\left\{{}\begin{matrix}3x-4y=-2\\2x+y=6\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}3x-4y=-2\\8x+4y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=22\\3x-4y=-2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a: =>3x-4y=-2 và 8x+4y=24
=>11x=22 và 2x+y=6
=>x=2 và y=6-2x=6-2*2=2
b: 2x-y=0 và 3x+y=4
=>5x=4 và y=2x
=>x=4/5 và y=8/5
c: x+3y=-2 và x-y=-1
=>4y=-1 và x=y-1
=>y=-1/4 và x=-1/4-1=-5/4
d: x+y=3 và 4x-3y=-2
=>4x+4y=12 và 4x-3y=-2
=>7y=14 và x+y=3
=>y=2 và x=1
Sai đề sửa + làm luôn
Biến đổi VT ta có:
VT= \(\left(\dfrac{x^2-3xy}{x+y}+y\right):\left(\dfrac{x}{x+y}-\dfrac{y}{y-x}-\dfrac{2xy}{x^2-y^2}\right)\)
= \(\left(\dfrac{x^2-3xy+xy+y^2}{x+y}\right):\left(\dfrac{x}{x+y}+\dfrac{y}{x-y}-\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\right)\)
= \(\left(\dfrac{x^2-2xy+y^2}{x+y}\right):\left(\dfrac{x^2-xy+xy+y^2-2xy}{\left(x-y\right)\left(x+y\right)}\right)\)
= \(\dfrac{\left(x-y\right)^2}{x+y}:\left(\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}\right)\)
= \(\dfrac{\left(x-y\right)^2}{x+y}.\dfrac{x+y}{x-y}\) = x - y = VP
Vậy...
Tham khảo
refer