Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(x+y)2=x2+2xy+y2=1+2xy
Ta lại có: (x-y)2\(\ge\)0 <=> x2-2xy+y2\(\ge\)0 <=> 2xy \(\le\)x2+y2=1
=> (x+y)2=1+2xy\(\le\)1+1=2
=> GTLN của (x+y)2 là 2
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
ta có x^2+y^2=1 mà x^2;y^2 lớn hơn hoặc bằng 0
từ đó => x^2=1 và y^2=0 hoặc x^2=0 và y^2=1
=> x=1 và y=0 hoặc x=0 và y=1
Vậy gtln của A là 1 trong cả 2 trường hợp trên
Ta có: \(15=x+y+xy\le x+y+\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{t^2}{4}+t\ge15\)(\(t=x+y\))
\(\Leftrightarrow\left(t-6\right)\left(t+10\right)\ge0\Leftrightarrow\orbr{\begin{cases}t\ge6\\t\le-10\end{cases}}\)
\(P=x^2+y^2=\frac{1}{2}.2\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+y\right)^2\ge\frac{1}{2}.6^2=18\)
Dấu \(=\)xảy ra khi \(x=y=3\).