K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

Ta có:

(x+y)2=x2+2xy+y2=1+2xy

Ta lại có: (x-y)2\(\ge\)0 <=> x2-2xy+y2\(\ge\)0 <=> 2xy \(\le\)x2+y2=1

=> (x+y)2=1+2xy\(\le\)1+1=2

=> GTLN của (x+y)2 là 2

3 tháng 3 2017

Bằng không

3 tháng 3 2017

Câu trả lời đúng là 2 nhưng ko biết tại sao

19 tháng 3 2017

Dùng bất đẳng thức Bu-nhi-a là ra rồi

18 tháng 3 2017

(X+y)2=x2+y2+2xy

Lại có: 2xy <= x2+y2

=> (x+y)2 <= x2+y2+x2+y2=2.(x2+y2)=2.1=2

=> Giá trị lớn nhất của (x+y)2 là 2

3 tháng 3 2017

GTLN cua (x+y)2 là 2

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)