Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\ge\frac{\left(\sqrt{2}+1\right)^2}{1-\sin x+\sin x}=3+2\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{\sqrt{2}}{1-\sin x}=\frac{1}{\sin x}\)\(\Leftrightarrow\)\(\sin x=\frac{1}{1+\sqrt{2}}\)
\(\frac{2cos^2x-\left(cos^2x+sin^2x\right)}{cosx+sinx}=\frac{cos^2x-sin^2x}{cosx+sinx}=\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{\left(cosx+sinx\right)}\)
\(=cosx-sinx\)
\(VT=\frac{2\cos^2x-1}{\cos x+\sin x}=\frac{2\cos^2x-\cos^2x-\sin^2x}{\cos x+\sin x}\)\(=\frac{\cos^2x-\sin^2x}{\cos x+\sin x}=\frac{\left(\cos x+\sin x\right)\left(\cos x-\sin x\right)}{\cos x+\sin x}\)
\(=\cos x-\sin x=VP\)
=> đpcm
Ta có : sin x =3/5 suy ra 5sin x = 3
25sin2x=9
25(1-cos2)=9
25cos2=16
5cos x =4
cos x = 4/5 . (1)
Thay (1) và sin x =3/5 vào M , ta được :
M=29/5
a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)
b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)
\(=\frac{1+tanx}{1+tanx}=1\)
c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)
\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)
Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)
\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)
\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)
d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)
Có: \(1=\sin^2x+\cos^2x\ge2\sin x.\cos x\)\(\Leftrightarrow\)\(\sin x.\cos x\le\frac{1}{2}\)
\(M=\frac{1}{3\left(\frac{1}{\sin x}+\frac{1}{\cos x}\right)+\frac{2}{\sin x.\cos x}}\le\frac{1}{\frac{6}{\sqrt{\sin x.\cos x}}+\frac{2}{\sin x.\cos x}}\le\frac{1}{\frac{6}{\sqrt{\frac{1}{2}}}+\frac{2}{\frac{1}{2}}}=\frac{1}{6\sqrt{2}+4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{\sin x}=\frac{1}{\cos x}\\\sin^2x+\cos^2x=1\end{cases}}\Leftrightarrow\sin x=\cos x=\frac{1}{\sqrt{2}}\)\(\Rightarrow\)\(x=45^0\)