Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=a^4+6a^3+11a^2+6a+24a\) 24.a chia hết cho 24 ta cần c/m
\(a^4+6a^3+11a^2+6a\) chia hết cho 24
\(a^4+6a^3+11a^2+6a=a\left(a^3+6a^2+11a+6\right)=\)
\(=a\left(a+1\right)\left(a^2+5a+6\right)=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)
Ta nhận thấy đây là tích của 4 số TN liên tiếp
Trong 4 số TN liên tiếp thì có 2 số chẵn liên tiếp 1 số chia hết cho 2 và 1 số chia hết cho 4 nên tích của chúng chia hết cho 8
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 1 số chia hết cho 3
=> tích của 4 số TN liên tiếp chia hết cho 3x8=24
Nên \(a^4+6a^3+11a^2+6a⋮24\Rightarrow M⋮24\)
Nhẩm nghiệm, thấy x=-1 thỉ P=0, phân tích đa thức dần thành nhân tử
P(x)=\(\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)
=\(2x^{^{ }4}+2x^3-9x^3-9x^2+7x^2+7x+6x+6\)
=\(\left(x+1\right)\left(x-2\right)\left(2x^2-5x-3\right)\)
=\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-1\right)\)
Đây là 1 tích trong đó có 3 số nguyên lien tiep.
Trong 3 so nguyen lien tiep co it nhat 1 so chan va 1 so chia het cho 3
=> h cua chung chia het cho 2x3=6.
Vay P chia het cho 6.
Lời giải:
Giả sử $M=a^2+5a+7\vdots 9$ với mọi $a$ nguyên.
$\Rightarrow a^2+5a+7\vdots 3$
$\Rightarrow a^2+5a+7-3a-6\vdots 3$
$\Rightarrow a^2+2a+1\vdots 3\Rightarrow (a+1)^2\vdots 3$
$\Rightarrow a+1\vdots 3$
$\Rightarrow a=3k-1$ với $k$ nguyên.
Khi đó:
$M=a^2+5a+7=(3k-1)^2+5(3k-1)+7=9k^2-6k+1+15k-5+7$
$=9k^2+9k+3\not\vdots 9$
Ta có đpcm.
1, n có dạng 2k+1(n\(\in N\)) Ta có:
\(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\)
\(=4k^2+4k+1+8k+4+3\)
\(=4k^2+12k+8\)
\(=4\left(k^2+3k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2
mà 4(k+1)(k+2)chia hết cho 4
\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n là số lẻ.
2, ta có:
\(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\)
\(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)
Ta có : n3−nn3−n = n(n2−1)n(n2−1) = (n−1).n.(n+1)(n−1).n.(n+1) Vì (n−1).n.(n+1)(n−1).n.(n+1) là tích 3 số nguyên liên tiếp nên sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vậy tích trên chia hết cho 6 Do đó : n3−nn3−n chia hết cho 6 với mọi số nguyên n.
ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n...
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6.
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm) .