Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phân số tối giản cần tìm là a/b, c/d và e/f. Theo đầu bài ta có:
\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=5\frac{25}{63}=\frac{340}{63}\) ( 1 )
Do a, c, e tỉ lệ nghịch với 20 ; 4 ; 5 nên \(a:c:e=1:5:4\Rightarrow a=\frac{c}{5}=\frac{e}{4}\Rightarrow\hept{\begin{cases}c=5a\\e=4a\end{cases}}\) ( 2 )
Do b, d, f tỉ lệ thuận với 1 ; 3 ; 7 nên \(b:d:f=1:3:7\Rightarrow b=\frac{d}{3}=\frac{f}{7}\Rightarrow\hept{\begin{cases}d=3b\\f=7b\end{cases}}\) ( 3 )
Thế ( 2 ), ( 3 ) vào 1, ta có:
\(\frac{a}{b}+\frac{5a}{3b}+\frac{4a}{7b}=\frac{340}{63}\)
\(\Rightarrow1\cdot\frac{a}{b}+\frac{5}{3}\cdot\frac{a}{b}+\frac{4}{7}\cdot\frac{a}{b}=\frac{340}{63}\)
\(\Rightarrow\frac{a}{b}\cdot\left(1+\frac{5}{3}+\frac{4}{7}\right)=\frac{340}{63}\)
\(\Rightarrow\frac{a}{b}\cdot\frac{68}{21}=\frac{340}{63}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=\frac{340}{63}:\frac{68}{21}=\frac{5}{3}\\\frac{c}{d}=\frac{5a}{3b}=\frac{25}{9}\\\frac{e}{f}=\frac{4a}{7b}=\frac{20}{21}\end{cases}}\)
a) Gọi 3 phần đó lần lượt là x;y;z
=>x/2 = y/3=z/5
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2=y/3=z/5=z+y+z/2+3+5 = 480/10 = 48
x/2 = 48 => x = 96
y/3 = 48 => y = 144
z/5=48 =>z=240
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)