Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=x+sin\left(2x\right)\)
\(y'=1+2cos\left(2x\right)\)
\(y'=0\Leftrightarrow1+cos\left(2x\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{3}\\x=\frac{2\pi}{3}\end{cases}}\)vì \(x\in\left(0,\pi\right)\).
\(y\left(\frac{\pi}{3}\right)=\frac{\pi}{3}+\frac{\sqrt{3}}{2},y\left(\frac{2\pi}{3}\right)=\frac{2\pi}{3}-\frac{\sqrt{3}}{2}\)
\(y\left(\frac{\pi}{3}\right)>y\left(\frac{2\pi}{3}\right)\)ta chọn D.
a) Tập xác định của hàm số là :
\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)
b) Tập xác định của hàm số là :
\(D=\left(1;+\infty\right)\)
c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)
Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
d) Hàm số xác định khi và chỉ khi
\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)
Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)
Ta có :
\(\sqrt{2}=2^{\frac{1}{2}}\)
\(\left(2^3\right)^{\log_{64}\frac{5}{4}}=2^{3\log_{2^6}\frac{5}{4}}=2^{\frac{1}{2}\log_2\frac{5}{4}}=2^{\log_2\sqrt{\frac{5}{4}}}=\sqrt{\frac{5}{4}}=\left(\frac{5}{4}\right)^{\frac{1}{2}}\)
\(2^{3^{\log_92}}=2^{3^{\frac{1}{2}\log_32}}=2^{3^{\log_3\sqrt{2}}}=2^{\sqrt{2}}\)
Mà : \(\sqrt{2}>\frac{\pi}{6}>\frac{1}{2}\Rightarrow2^{\sqrt{2}}>2^{\frac{\pi}{6}}>2^{\frac{1}{2}}\)
\(\Leftrightarrow2^{3^{\log_92}}>2^{\frac{\pi}{6}}>\sqrt{2}\) (1)
Mặt khác : \(2>\frac{5}{4}\Rightarrow2^{\frac{1}{2}}>\left(\frac{5}{4}\right)^{\frac{1}{2}}\) hay \(\sqrt{2}>\left(2^3\right)^{\log_{64}\frac{5}{4}}\) (2)
Từ (1) và (2) : \(2^{3^{\log_92}}>2^{\frac{\pi}{6}}>\sqrt{2}>\left(2^3\right)^{\log_{64}\frac{5}{4}}\)
Vậy thứ tự giảm dần là :
\(2^{3^{\log_92}};2^{\frac{\pi}{6}};\sqrt{2};\left(2^3\right)^{\log_{64}\frac{5}{4}}\)
a) \(\sqrt[3]{10}=\sqrt[15]{10^5}>\sqrt[15]{20^3=\sqrt[5]{20}}\)
b) Vì \(\frac{1}{e}<1\) và \(\sqrt{8}-3<0\) nên \(\left(\frac{1}{e}\right)^{\sqrt{8}-3}>1\)
c) Vì \(\frac{1}{8}<1\) và \(\pi>3.14\) nên \(\left(\frac{1}{8}\right)^{\pi}<\left(\frac{1}{8}\right)^{3,14}\)
d) Vì \(\frac{1}{\pi}<1\) và \(1,4<\sqrt{2}\) nên \(\left(\frac{1}{\pi}\right)^{1,4}>\pi^{-\sqrt{2}}\)
a. Ta có : \(\begin{cases}\left(0,01\right)^{-\sqrt{3}}=\left(10^{-2}\right)^{-\sqrt{3}}=\left(10\right)^{2\sqrt{3}};1000=10^3\\2\sqrt{3}>3\end{cases}\)
\(\Rightarrow\left(0,01\right)^{-\sqrt{3}}>1000\)
b. Ta có :
\(\frac{\pi}{2}>1\) và \(2\sqrt{2}< 3\)
\(\Rightarrow\left(\frac{\pi}{2}\right)^{2\sqrt{2}}< \left(\frac{\pi}{2}\right)^3\)
b.
\(\Leftrightarrow\frac{2\pi}{3}\left(sinx-1\right)=k2\pi\)
\(\Leftrightarrow sinx-1=3k\)
\(\Leftrightarrow sinx=3k+1\)
Do \(-1\le sinx\le1\)
\(\Rightarrow-1\le3k+1\le1\Rightarrow-\frac{2}{3}\le k\le0\)
\(\Rightarrow k=0\)
\(\Rightarrow sinx=1\)
\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)
c.
ĐKXĐ: ...
\(\Leftrightarrow\frac{\pi}{4}\left(cosx-1\right)=-\frac{\pi}{4}+k\pi\)
\(\Leftrightarrow cosx-1=4k-1\)
\(\Leftrightarrow cosx=4k\)
Mà \(-1\le cosx\le1\Rightarrow-1\le4k\le1\)
\(\Rightarrow-\frac{1}{4}\le k\le\frac{1}{4}\Rightarrow k=0\)
\(\Rightarrow cosx=0\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
Ta có :
\(2\log_45=\log_25\)
\(\log_{\sqrt{2}}\frac{4}{\sqrt{3}}=\log_2\frac{4}{\sqrt{3}}=\log_2\frac{16}{3}\)
\(\log_9\frac{1}{4}=\log_{3^2}\left(\frac{1}{2}\right)^2=\log_3\frac{1}{2}\)
Mà :
\(\begin{cases}\frac{1}{2}< \frac{\pi}{4}\Rightarrow\log_3\frac{1}{2}< \log_3\frac{\pi}{4}\\\log_3\frac{\pi}{4}< 0< \log_25\\5< \frac{16}{3}\Rightarrow\log_25< \log_2\frac{16}{3}\end{cases}\) \(\Rightarrow\log_3\frac{1}{2}< \log_3\frac{\pi}{4}< \log_25< \log_2\frac{16}{3}\)
Hay :
\(\log_9\frac{1}{4}< \log_3\frac{\pi}{4}< 2\log_45< \log_{\sqrt{2}}\frac{4}{\sqrt{3}}\)
Vậy thứ tự giảm dần là :
\(\log_{\sqrt{2}}\frac{4}{\sqrt{3}};2\log_45;\log_3\frac{\pi}{4};\log_9\frac{1}{4}\)
a) Ta có cơ số \(a=0,3<1\) và \(3,15>\pi>\frac{2}{3}>0,5\)
Nên thứ tự tăng dần là :
\(0,3^{3,15};0,3^{\pi};0,3^{\frac{2}{3}};0,3^{0,5}\)
b) Vì số mũ \(\pi>0\) nên hàm số lũy thừa \(y=x^{\pi}\) luôn đồng biến. Mặt khác :
\(\frac{1}{\sqrt{2}}<\sqrt{2}<1,8<\pi\)
Nên thứ tự tăng dần là :
\(\left(\frac{1}{\sqrt{2}}\right)^{\pi};\sqrt{2^{\pi}};1,8^{\pi};\pi^{\pi}\)