Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^2-x+\frac{1}{4}=x^2-2x\frac{1}{2}+\left(\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\)
b. \(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\)
c. \(x^2-3x+\frac{9}{4}=x^2-2x\frac{3}{2}+\left(\frac{3}{2}\right)^2=\left(x-\frac{3}{2}\right)^2\)
TK MIK NHA~
a) \(x^2+4x+4\)
\(=x^2+2\cdot2\cdot x+2^2\)
\(=\left(x+2\right)^2\)
b) \(4x^2-4x+1\)
\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2\)
\(=\left(2x-1\right)^2\)
c) \(x^2-x+\dfrac{1}{4}\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2\)
d) \(4\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=\left[2\left(x+y\right)\right]^2-2\cdot2\left(x+y\right)\cdot1+1^2\)
\(=\left[2\left(x+y\right)-1\right]^2\)
\(=\left(2x+2y-1\right)^2\)
a. $x^2+4x+4$
$=x^2+2\cdot x\cdot2+2^2$
$=(x+2)^2$
b. $x^2-6xy+9y^2$
$=x^2-2\cdot x\cdot3y+(3y)^2$
$=(x-3y)^2$
c. $4x^2+12x+9$
$=(2x)^2+2\cdot2x\cdot3+3^2$
$=(2x+3)^2$
d. $x^2-x+\dfrac14$
$=x^2-2\cdot x\cdot \dfrac12+\Bigg(\dfrac12\Bigg)^2$
$=\Bigg(x-\dfrac12\Bigg)^2$
a) \(x^2-6x+9=x^2-2.3.x+3^2=\left(x-3\right)^2\)
b)\(x^2+4x+4=x^2+2.2.x+2^2=\left(x+2\right)^2\)
c)\(4x^2+4x+1=\left(2x\right)^2+2.2x.1+1^2=\left(2x+1\right)^2\)
d)\(4x^2+12xy+9y^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2=\left(2x+3y\right)^2\)
e)\(x^2-8x+16=x^2-2.4.x+4^2=\left(x-4\right)^2\)
a) x2 -6x +9 = (x-3)2
b) x2+4x +4= (x+2)2
c) 4x2+4x+1= (2x+1)2
d) 4x2+12xy+9y2 = (2x+3y)2
e) x2-8x+16 = (x-4)2
Đây chính là hằng đẳng thức nhé bn....
a, 1-2x+x^2 = x^2 - 2x.1 + 1^2= (x-1)^2
b, 4y+4+y^2 = y^2 + 2y.2+ 2^2 = (y+2)^2
c, 1/16+1/2x+x^2 = x^2 + 2.x.\(\frac{1}{4}\)+ (1/4)^2 = (x+1/4)^2
d, 36x^2+12xy+y^2 = (6x)^2 + 2.6x.y + y^2 = (6x+y)^2
a) \(1-2x+x^2=\left(1-x\right)^2=\left(x-1\right)^2\)
b) \(4y+4+y^2=y^2+4y+4=\left(y+2\right)^2\)
c) \(\frac{1}{16}+\frac{1}{2}x+x^2=\left(x+\frac{1}{4}\right)^2\)
d) \(36x^2+12xy+y^2=\left(6x+y\right)^2\)
1) b) \(\left(x-3y\right)^2+6\left(x-3\right)+9=\left(x-3y+3\right)^2\)
c) \(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
2) \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=11\)
\(\Rightarrow x^2+6x+9-x^2+4=11\)
\(\Rightarrow6x=-2\Rightarrow x=-\dfrac{1}{3}\)
1, \(x^2+2xy+y^2=\left(x+y\right)^2\)
2, \(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)
3, \(x^2+5x+\dfrac{25}{4}=x^2+2\cdot\dfrac{5}{2}\cdot x+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)
4, \(16x^2-8x+1=\left(4x\right)^2-2\cdot4x\cdot1+1^2=\left(4x-1\right)^2\)
5, \(x^2+x+\dfrac{1}{4}=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
1: =(x+y)^2
2: =(2x+3)^2
3: =(x+5/2)^2
4: =(4x-1)^2
5: =(x+1/2)^2
6: =(x-3/2)^2
7: =(x+1)^3
8: =(1/2x+1)^2
9: =(3y-1/3)^3
10: =(2x+y)^3
a) x^3-3x^2+3x-1
=x3-3x2.1+3x.12-13
=(x-1)3
b)16+8x+x^2
=42+2.4.x+x2
=(4+x)2
c) 3x^2+3x+1+x^3
=x3+3x2.1+3x.12+13
=(x+1)3
d)1-2y+y^2
=1-2.1.y+y2
=(1-y)2
\(\left(x^2+4x+4\right)=\left(x+2\right)^2\)
\(x^2+4x+4=x^2+2.x.2+2^2=\left(x+2\right)^2\)