Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2005\equiv-1\left(mod2006\right)\)
\(\Rightarrow2005^{2007}\equiv-1\left(mod2006\right)\)
Lại có: \(2007=1\left(mod2006\right)\)
\(\Rightarrow2007^{2005}\equiv1\left(mod2006\right)\)
\(\Rightarrow2005^{2007}+2007^{2005}\equiv0\left(mod2006\right)\)
Vậy \(2005^{2007}+2007^{2005}⋮2006\left(đpcm\right)\)
Ta có:
20052007 + 20072005
= (20052007 + 12007) + (20072005 - 12005)
Vì 20052007 + 12007 luôn chia hết cho 2005 + 1 = 2006; 20072005 - 12005 luôn chia hết cho 2007 - 1 = 2006
=> (20052007 + 12007) + (20072005 - 12005) chia hết cho 2006
=> 20052007 + 20072005 chia hết cho 2006 (đpcm)
Xog
Ta có:
20052007 + 20072005
= (20052007 + 12007) + (20072005 - 12005)
Vì 20052007 + 12007 luôn chia hết cho 2005 + 1 = 2006; 20072005 - 12005 luôn chia hết cho 2007 - 1 = 2006
=> (20052007 + 12007) + (20072005 - 12005) chia hết cho 2006
=> 20052007 + 20072005 chia hết cho 2006 (đpcm)
Bài 1 : a . Sử dụng công thúc sau : a^n - b^n = ( a-b ) ( a^n-1 + a^n-2 . b + .....+ b^n-1 )
=> A = 21^5 - 1 chia hết cho 20
=> A = 21^10 - 1 chia hết 400
=> A= 21^10 - 1 chia hết cho 200
Vì x+y+z=0;xy+yz+xz=0
⇒(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=0
⇒(x+y+z)2=x2+y2+z2=0
⇒x=y=z=0
⇒S=(x−1)2005+(y−1)2006+(z+1)2007=(−1)2005+(−1)2006+12007=1
Ta có : 2005n+1 - 2005n
= 2005n ( 2005 - 1 )
= 2005n . 2004 luôn chia hết cho 2004
Vậy 2005n+1 - 2005n luôn chia hết cho 2004