K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Bài 2 

a) 4^100 = (2^2)^100= 2^200

Mà 2^202 > 2^200 => 4^100 < 2^202                          

b)Ta có: 31^5 <32^5 = (2^5)^5 = 2^25       (1)

               17^7 > 16^7= (2^4)^7= 2^28        (2)

                Từ (1) và (2) => 31^5<17^7

27 tháng 12 2015

Bài nào không hiểu thì mình giải cho 

27 tháng 12 2015

dễ 

11 tháng 4 2016

Câu 1.   

a).  2A = 8 + 2 3 + 2 4 + . . . + 2 21.

=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20).  = 2 21.

     

b).          (x + 1) + ( x + 2 ) + . . .  . . . . . + (x + 100)  = 5750

=>             x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100     =  5750

=>   ( 1 + 2 + 3 + . .  . + 100) + ( x + x + x . . . . . . . + x )   =  5750

=>             101 . 50              +                100 x                          = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

                   

 

 

 

 

                   101 . 50              +                100 x                          = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

12 tháng 4 2016

Câu 1.   a).  2A = 8 + 2 3 + 2 4 + . . . + 2 21.

=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20).  = 2 21.

       b).          (x + 1) + ( x + 2 ) + . . .  . . . . . + (x + 100)  = 5750

=>             x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100     =  5750

=>   ( 1 + 2 + 3 + . .  . + 100) + ( x + x + x . . . . . . . + x )   =  5750

=>                101 . 50              +                  100 x                 = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

10 tháng 4 2016

vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM 

n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)

nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3

nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ

10 tháng 4 2016

câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)

Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z

nên ta chỉ cần tìm giá trị của n để A chia hết cho5

để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5

                                   nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)

mà 1<n<10 nên n=5(n là số nguyên dương)

vậy giá trị của n thỏa mãn đề bài là 5

 

3 tháng 4 2016

b,(*)chứng minh a=-3b:

xét a-b=2(a+b)

=>a-b=2a+2b

=>-b-2b=2a-a

=>-3b=a (đpcm) 

(*) tính a/b :

Từ -3b=a=>a/b=-3

(*)tính a và b:

Ta có : a-b=a/b=-3

             và 2(a+b)=a/b=-3

hệ pt<=>a-b=-3                   

        và 2(a+b)=-3    

       <=>a-b=-3    (1)

        và a+b=-1,5   (2)

Lấy (1)+(2),vế theo vế ta đc:

(a-b)+(a+b)=-3+(-1,5)

=>a-b+a+b=-4,5

=>2a=-4,5=>a=-2,25

Mà a-b=-3=>b=0,75

Vậy (a;b)=(-2,25;0,75)

 

 

 

3 tháng 4 2016

c) vì (x-y2+z)2 >= 0 với mọi x;y;z

      (y-2)2 >= 0 với mọi y

     (z+3)2 >= 0 với mọi z

=>(x-y2+z)2+(y-2)2+(z+3)2 >= 0 với mọi x;y;z

Mà theo đề: (x-y2+z)2+(y-2)2+(z+3)2=0

=>(x-y2+z)2=(y-2)2=(z+3)2=0

+)(y-2)2=0=>y=2

+)(z+3)2=0=>z=-3

Thay y=2;z=-3 vào (x-y2+z)2=0=>x-22+(-3)2=0=>x=-5

Vậy (x;y;z)=(-5;2;-3)

30 tháng 3 2017

Do \(2A+B=5x^2+y^2+1>0\) nên \(A,B\) không cùng đồng thời nhận giá trị âm được!

30 tháng 3 2017

dạ có thể giải thích không ạ.

a: \(\Leftrightarrow A=-\left(x^2-xy^2+2xz-3y^2\right)=-x^2+xy^2-2xz+3y^2\)

b: Vì tổng của B với \(4x^2y+5y^2-xz+z^2\) là một đa thức không chứa biến x nên \(B=-4x^2y+xz\)

2 tháng 5 2017

Bài 3:

\(\left(\dfrac{1}{32}\right)^7=\dfrac{1^7}{32^7}=\dfrac{1}{32^7}=\dfrac{1}{\left(2^5\right)^7}=\dfrac{1}{2^{35}}\\ \left(\dfrac{1}{16}\right)^9=\dfrac{1^9}{16^9}=\dfrac{1}{16^9}=\dfrac{1}{\left(2^4\right)^9}=\dfrac{1}{2^{36}}\)

\(2^{35}< 2^{36}\) nên \(\dfrac{1}{2^{35}}>\dfrac{1}{2^{36}}\) hay \(\left(\dfrac{1}{32}\right)^7>\left(\dfrac{1}{16}\right)^9\)

15 tháng 2 2016

giúp mình vs. Mai hạn cuối rồi

Câu 1: 

\(AB=\sqrt{\left[3-\left(-2\right)\right]^2+\left(3-2\right)^2}=\sqrt{26}\)

\(BC=\sqrt{\left(2-3\right)^2+\left(-2-3\right)^2}=\sqrt{26}\)

\(AC=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-2-2\right)^2}=4\sqrt{2}\)

\(P=\dfrac{AB+BC+AC}{2}=\dfrac{2\sqrt{26}+4\sqrt{2}}{2}=\sqrt{26}+2\sqrt{2}\)

\(S=\sqrt{\left(\sqrt{26}+2\sqrt{2}\right)\cdot2\sqrt{2}\cdot2\sqrt{2}\cdot\left(\sqrt{26}-2\sqrt{2}\right)}=\sqrt{18\cdot8}=12\left(đvdt\right)\)